全一卷
1.设x,则不等式的解集为______________________ .
2.设,其中为虚数单位,则=_____________.
3.已知平行直线,则l1与l2的距离是_____________.
4.某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是_________(米).
5.已知点在函数的图像上,则.
6.如图,在正四棱柱中,底面的边长为3,与底面所成的角的大小为,则该正四棱柱的高等于____________.
7.方程在区间上的解为___________ .
8.在的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.
9.已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.
10.设a>0,b>0. 若关于x,y的方程组无解,则的取值范围是 .
11.无穷数列由k个不同的数组成,为的前n项和.若对任意,,则k的最大值为________.
12.在平面直角坐标系中,已知A(1,0),B(0,−1),P是曲线上一个动点,则的取值范围是_____________ .
13.设.若对任意实数都有,则满足条件的有序实数组的组数为_______ .
14.如图,在平面直角坐标系中,O为正八边形的中心,.任取不同的两点,点P满足,则点P落在第一象限的概率是_____________.
15.设R,则“>1”是“>1”的
A.充分不必要条件 |
B.必要不充分条件 |
C.充要条件 |
D.既不充分也不必要条件 |
16.下列极坐标方程中,对应的曲线为如图的是().
A. | B. |
C. | D. |
17.已知无穷等比数列的公比为,前n项和为,且.下列条件中,使得恒成立的是().
A. |
B. |
C. |
D. |
18.设、、是定义域为R的三个函数,对于命题:①若、、均是增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( ).
A.①和②均为真命题 |
B.①和②均为假命题 |
C.①为真命题,②为假命题 |
D.①为假命题,②为真命题 |
19.本题共有2个小题,第一小题满分6分,第二小题满分6分.
将边长为1的正方形(及其内部)绕的旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧.
(1)求三棱锥的体积;
(2)求异面直线与所成的角的大小.
将边长为1的正方形(及其内部)绕的旋转一周形成圆柱,如图,长为,长为,其中与在平面的同侧.
(1)求三棱锥的体积;
(2)求异面直线与所成的角的大小.
20.有一块正方形菜地,所在直线是一条小河.收获的蔬菜可送到点或河边运走.于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图.
(1)求菜地内的分界线的方程;
(2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为.设是上纵坐标为1的点,请计算以为一边、另有一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值.
(1)求菜地内的分界线的方程;
(2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为.设是上纵坐标为1的点,请计算以为一边、另有一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值.
21.双曲线的左、右焦点分别为,直线过且与双曲线交于两点.
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
22.已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
(1)当时,解不等式;
(2)若关于的方程的解集中恰好有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
23.若无穷数列满足:只要,必有,则称具有性质.
(1)若具有性质,且,,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.
(1)若具有性质,且,,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有性质,并说明理由;
(3)设是无穷数列,已知.求证:“对任意都具有性质”的充要条件为“是常数列”.