全一卷
1.设全集为R,集合,,则
A. | B. | C. | D. |
2.(2018年天津卷文)设变量x,y满足约束条件 则目标函数的最大值为
A.6 | B.19 | C.21 | D.45 |
3.阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为
A.1 | B.2 | C.3 | D.4 |
4.设,则“”是“”的
A.充分而不必要条件 |
B.必要而不充分条件 |
C.充要条件 |
D.既不充分也不必要条件 |
5.已知,,,则a,b,c的大小关系为
A. | B. | C. | D. |
6.将函数的图象向右平移个单位长度,所得图象对应的函数
A.在区间上单调递增 | B.在区间上单调递减 |
C.在区间上单调递增 | D.在区间上单调递减 |
7.已知双曲线 的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且 则双曲线的方程为
A. | B. |
C. | D. |
8.如图,在平面四边形ABCD中,
若点E为边CD上的动点,则的最小值为
若点E为边CD上的动点,则的最小值为
A. | B. | C. | D. |
9.i是虚数单位,复数___________ .
10.在二项式的展开式中,的系数为__________ .
11.已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________ .
12.已知圆的圆心为,直线(为参数)与该圆相交于、两点,则的面积为___________ .
13.已知,且,则的最小值为_____________ .
14.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________ .
15.在中,内角A,B,C所对的边分别为a,b,c.已知.
(1)求角B的大小;
(2)设a=2,c=3,求b和的值.
(1)求角B的大小;
(2)设a=2,c=3,求b和的值.
16.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足 的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
17.如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:平面;
(II)求二面角的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
(I)若M为CF的中点,N为EG的中点,求证:平面;
(II)求二面角的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
18.设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.
(I)求和的通项公式;
(II)设数列的前n项和为,
(i)求;
(ii)证明.
(I)求和的通项公式;
(II)设数列的前n项和为,
(i)求;
(ii)证明.
19.设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.
(I)求椭圆的方程;
(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.
(I)求椭圆的方程;
(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值.
20.已知函数,,其中a>1.
(I)求函数的单调区间;
(II)若曲线在点处的切线与曲线在点 处的切线平行,证明:;
(III)证明:当时,存在直线l,使l是曲线的切线,也是曲线的切线.
(I)求函数的单调区间;
(II)若曲线在点处的切线与曲线在点 处的切线平行,证明:;
(III)证明:当时,存在直线l,使l是曲线的切线,也是曲线的切线.