全一卷
1.的相反数是( )
A. | B. | C. | D.6 |
2.的相反数是( )
A. | B. | C. | D.6 |
3.如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是( )
A. | B. |
C. | D. |
4.如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是( )
A. | B. |
C. | D. |
5.下列说法中,正确的是( )
A.调查某班45名学生的身高情况宜采用全面调查 |
B.“太阳东升西落”是不可能事件 |
C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图 |
D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次 |
6.下列说法中,正确的是( )
A.调查某班45名学生的身高情况宜采用全面调查 |
B.“太阳东升西落”是不可能事件 |
C.为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图 |
D.任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次 |
7.下列计算正确的是( )
A. | B. | C. | D. |
8.下列计算正确的是( )
A. | B. | C. | D. |
9.在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. | B. | C. | D. |
10.在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. | B. | C. | D. |
11.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4,则这组数据的众数和中位数分别是( )
A.3,4 | B.4,3 | C.3,3 | D.4,4 |
12.《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4,则这组数据的众数和中位数分别是( )
A.3,4 | B.4,3 | C.3,3 | D.4,4 |
13.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )
A.元 | B.元 | C.元 | D.元 |
14.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )
A.元 | B.元 | C.元 | D.元 |
15.如图,,则的度数为( )
A. | B. | C. | D. |
16.如图,,则的度数为( )
A. | B. | C. | D. |
17.如图,PA,PB是的切线,A、B为切点,若,则的度数为( )
A. | B. | C. | D. |
18.如图,PA,PB是的切线,A、B为切点,若,则的度数为( )
A. | B. | C. | D. |
19.如图,在中,按以下步骤作图:
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
A.4 | B.2 | C. | D. |
20.如图,在中,按以下步骤作图:
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
①分别过点A、B为圆心,大于的长为半径画弧,两弧交于P、Q两点;
②作直线PQ交AB于点D;
③以点D为圆心,AD长为半径画弧交PQ于点M、连接AM、BM.
若,则AM的长为( )
A.4 | B.2 | C. | D. |
21.若式子在实数范围内有意义,则实数的取值范围是___________ .
22.若式子在实数范围内有意义,则实数的取值范围是___________ .
23.分式方程的解是_____________ .
24.分式方程的解是_____________ .
25.如图,A、B、C是上的点,,垂足为点D,且D为OC的中点,若,则BC的长为___________ .
26.如图,A、B、C是上的点,,垂足为点D,且D为OC的中点,若,则BC的长为___________ .
27.关于的一元二次方程有两个不相等的实数根,则实数t的值为___________ .
28.关于的一元二次方程有两个不相等的实数根,则实数t的值为___________ .
29.为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有___________ 名.
30.为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查.结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有___________ 名.
31.当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是___________ (填写网名字母代号).
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是
32.当今大数据时代,“二维码”具有存储量大.保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中小方格专门用做纠错码和其他用途的编码,这相当于1000个方格只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成个不同的数据二维码,现有四名网友对的理解如下:
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是___________ (填写网名字母代号).
YYDS(永远的神):就是200个2相乘,它是一个非常非常大的数;
DDDD(懂的都懂):等于;
JXND(觉醒年代):的个位数字是6;
QGYW(强国有我):我知道,所以我估计比大.
其中对的理解错误的网友是
33.计算:.
34.计算:.
35.解不等式组:
36.解不等式组:
37.为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为的斜坡,坡角于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为.
(1)求该斜坡的高度BD;
(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)
(1)求该斜坡的高度BD;
(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)
38.为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB表示该小区一段长为的斜坡,坡角于点D.为方便通行,在不改变斜坡高度的情况下,把坡角降为.
(1)求该斜坡的高度BD;
(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)
(1)求该斜坡的高度BD;
(2)求斜坡新起点C与原起点A之间的距离.(假设图中C,A,D三点共线)
39.2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题“为推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
(1)表中___________,___________,___________;
(2)请补全频数分布直方图:
(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
成绩x/分 | 频数 | 频率 |
15 | 0.1 | |
a | 0.2 | |
45 | b | |
60 | c |
(1)表中___________,___________,___________;
(2)请补全频数分布直方图:
(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
40.2022年3月22日至28日是第三十五届“中国水周”,在此期间,某校举行了主题“为推进地下水超采综合治理,复苏河湖生态环境”的水资源保护知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.
(1)表中___________,___________,___________;
(2)请补全频数分布直方图:
(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
成绩x/分 | 频数 | 频率 |
15 | 0.1 | |
a | 0.2 | |
45 | b | |
60 | c |
(1)表中___________,___________,___________;
(2)请补全频数分布直方图:
(3)若某班恰有3名女生和1名男生的初赛成绩均为99分,从这4名学生中随机选取2名学生参加复赛,请用列表法或画树状图法求选出的2名学生恰好为一名男生、一名女生的概率.
41.如图,AC平分,垂足分别为B,D.
(1)求证:;
(2)若,求四边形ABCD的面积.
(1)求证:;
(2)若,求四边形ABCD的面积.
42.如图,AC平分,垂足分别为B,D.
(1)求证:;
(2)若,求四边形ABCD的面积.
(1)求证:;
(2)若,求四边形ABCD的面积.
43.电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
③该歌词表达的数学题的正确答案有无数多种.( )
(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
③该歌词表达的数学题的正确答案有无数多种.( )
(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
44.电影《刘三姐》中,有这样一个场景,罗秀才摇头晃脑地吟唱道:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得匀?”该歌词表达的是一道数学题.其大意是:把300条狗分成4群,每个群里,狗的数量都是奇数,其中一个群,狗的数量少:另外三个群,狗的数量多且数量相同.问:应该如何分?请你根据题意解答下列问题:
(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
③该歌词表达的数学题的正确答案有无数多种.( )
(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
(1)刘三姐的姐妹们以对歌的形式给出答案:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条给财主.”请你根据以上信息,判断以下三种说法是否正确,在题后相应的括号内,正确的打“√”,错误的打“×”.
①刘三姐的姐妹们给出的答案是正确的,但不是唯一正确的答案.( )
②刘三姐的姐妹们给出的答案是唯一正确的答案.( )
③该歌词表达的数学题的正确答案有无数多种.( )
(2)若罗秀才再增加一个条件:“数量多且数量相同的三个群里,每个群里狗的数量比数量较少的那个群里狗的数量多40条”,求每个群里狗的数量.
45.如图,在中,对角线AC,BD相交于点O,.
(1)求证:;
(2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
(1)求证:;
(2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
46.如图,在中,对角线AC,BD相交于点O,.
(1)求证:;
(2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
(1)求证:;
(2)若点E,F分别为AD,AO的中点,连接EF,,求BD的长及四边形ABCD的周长.
47.如图,四边形ABCD内接于,对角线AC,BD相交于点E,点F在边AD上,连接EF.
(1)求证:;
(2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
(3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
②当,时,试用含m,n,p的式子表示.
(1)求证:;
(2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
(3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
②当,时,试用含m,n,p的式子表示.
48.如图,四边形ABCD内接于,对角线AC,BD相交于点E,点F在边AD上,连接EF.
(1)求证:;
(2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
(3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
②当,时,试用含m,n,p的式子表示.
(1)求证:;
(2)当时,则___________;___________;___________.(直接将结果填写在相应的横线上)
(3)①记四边形ABCD,的面积依次为,若满足,试判断,的形状,并说明理由.
②当,时,试用含m,n,p的式子表示.
49.若关于x的函数y,当时,函数y的最大值为M,最小值为N,令函数,我们不妨把函数h称之为函数y的“共同体函数”.
(1)①若函数,当时,求函数y的“共同体函数”h的值;
②若函数(,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数,求函数y的“共同体函数”h的最大值;
(3)若函数,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数”h的最小值.若存在,求出k的值;若不存在,请说明理由.
(1)①若函数,当时,求函数y的“共同体函数”h的值;
②若函数(,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数,求函数y的“共同体函数”h的最大值;
(3)若函数,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数”h的最小值.若存在,求出k的值;若不存在,请说明理由.
50.若关于x的函数y,当时,函数y的最大值为M,最小值为N,令函数,我们不妨把函数h称之为函数y的“共同体函数”.
(1)①若函数,当时,求函数y的“共同体函数”h的值;
②若函数(,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数,求函数y的“共同体函数”h的最大值;
(3)若函数,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数”h的最小值.若存在,求出k的值;若不存在,请说明理由.
(1)①若函数,当时,求函数y的“共同体函数”h的值;
②若函数(,k,b为常数),求函数y的“共同体函数”h的解析式;
(2)若函数,求函数y的“共同体函数”h的最大值;
(3)若函数,是否存在实数k,使得函数y的最大值等于函数y的“共同体函数”h的最小值.若存在,求出k的值;若不存在,请说明理由.