全一卷
1.8的相反数是( )
A. | B.8 | C. | D. |
2.2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )
A. | B. | C. | D. |
3.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. | B. | C. | D. |
4.下列运算结果为的是( )
A. | B. | C. | D. |
5.下列计算正确的是( )
A. | B. | C. | D. |
6.为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )
A.众数是82 | B.中位数是84 | C.方差是84 | D.平均数是85 |
7.如图是由6个相同的正方体堆成的物体,它的左视图是( ).
A. | B. | C. | D. |
8.如图是某商场营业大厅自动扶梯的示意图.自动扶梯的倾斜角为,大厅两层之间的距离为6米,则自动扶梯的长约为()( ).
A.7.5米 | B.8米 | C.9米 | D.10米 |
9.下列命题是真命题的是( ).
A.正六边形的外角和大于正五边形的外角和 | B.正六边形的每一个内角为 |
C.有一个角是的三角形是等边三角形 | D.对角线相等的四边形是矩形 |
10.不等式组的解集在数轴上可表示为( )
A. | B. |
C. | D. |
11.下列说法正确的是( )
A.为了解我国中学生课外阅读情况,应采取全面调查方式 |
B.某彩票的中奖机会是1%,买100张一定会中奖 |
C.从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是 |
D.某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人 |
12.如图,矩形纸片,点M、N分别在矩形的边、上,将矩形纸片沿直线折叠,使点C落在矩形的边上,记为点P,点D落在G处,连接,交于点Q,连接.下列结论:①四边形是菱形;②点P与点A重合时,;③的面积S的取值范围是.其中所有正确结论的序号是( )
A.①②③ | B.①② | C.①③ | D.②③ |
13.要使二次根式有意义,则的取值范围是________ .
14.计算:=_____
15.因式分解:__________ .
16.底面半径为3,母线长为4的圆锥的侧面积为__________ .(结果保留)
17.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________ 棵.
18.如图1,菱形的对角线与相交于点O,P、Q两点同时从O点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P的运动路线为,点Q的运动路线为.设运动的时间为x秒,P、Q间的距离为y厘米,y与x的函数关系的图象大致如图2所示,当点P在段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为__________ 厘米.
19.计算:.
20.如图,点A、B、D、E在同一条直线上,.求证:.
21.“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.
(1)图中其他垃圾所在的扇形的圆心角度数是 度;
(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?
(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.
(1)图中其他垃圾所在的扇形的圆心角度数是 度;
(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?
(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.
22.如图,点E为正方形外一点,,将绕A点逆时针方向旋转得到的延长线交于H点.
(1)试判定四边形的形状,并说明理由;
(2)已知,求的长.
(1)试判定四边形的形状,并说明理由;
(2)已知,求的长.
23.如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为,单层部分的长度为.经测量,得到下表中数据.
(1)根据表中数据规律,求出y与x的函数关系式;
(2)按小文的身高和习惯,背带的长度调为时为最佳背带长.请计算此时双层部分的长度;
(3)设背带长度为,求L的取值范围.
双层部分长度 | 2 | 8 | 14 | 20 |
单层部分长度 | 148 | 136 | 124 | 112 |
(1)根据表中数据规律,求出y与x的函数关系式;
(2)按小文的身高和习惯,背带的长度调为时为最佳背带长.请计算此时双层部分的长度;
(3)设背带长度为,求L的取值范围.
24.如图,是的直径,D为上一点,E为的中点,点C在的延长线上,且.
(1)求证:是的切线;
(2)若,求的长.
(1)求证:是的切线;
(2)若,求的长.
25.如图,的顶点坐标分别为,动点P、Q同时从点O出发,分别沿x轴正方向和y轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P到达点B时点P、Q同时停止运动.过点Q作分别交、于点M、N,连接、.设运动时间为t(秒).
(1)求点M的坐标(用含t的式子表示);
(2)求四边形面积的最大值或最小值;
(3)是否存在这样的直线l,总能平分四边形的面积?如果存在,请求出直线l的解析式;如果不存在,请说明理由;
(4)连接,当时,求点N到的距离.
(1)求点M的坐标(用含t的式子表示);
(2)求四边形面积的最大值或最小值;
(3)是否存在这样的直线l,总能平分四边形的面积?如果存在,请求出直线l的解析式;如果不存在,请说明理由;
(4)连接,当时,求点N到的距离.
26.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如……都是“雁点”.
(1)求函数图象上的“雁点”坐标;
(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
①求c的取值范围;
②求的度数;
(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.
(1)求函数图象上的“雁点”坐标;
(2)若抛物线上有且只有一个“雁点”E,该抛物线与x轴交于M、N两点(点M在点N的左侧).当时.
①求c的取值范围;
②求的度数;
(3)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),P是抛物线上一点,连接,以点P为直角顶点,构造等腰,是否存在点P,使点C恰好为“雁点”?若存在,求出点P的坐标;若不存在,请说明理由.