读故事想问题.
在数学上也不乏“此时无声胜有声”的小故事.1903年,在纽约的一次数学报告会上,数学家科勒上了讲台,他没说一句话,知识用粉笔在黑板上写了两个算式,一个是67个2相乘减1,另一个是193707721×761838257287,并演算出结果.两个算式的结果完全相同,这时,全场爆发出经久不息的掌声.这是为什么呢?
因为科勒解决了200年来一直没有弄清的一个问题,即67个2相乘减1的结果是不是质数?现在既然它等于另外另个数的乘积,因此证明67个2相乘再减1不是质数,而是合数.
科勒只作了一个简短的无声的报告,可这是他花了3年中全部星期天的试卷才得出的结论.在这简单算式中所蕴涵的智慧、毅力和努力,比洋洋洒洒的万言报告更具魅力.
请你用数学概念说明为什么67个2相乘再减1的结果不是质数而是合数.