学进去-教育应平等而普惠
试题
类型:现代文阅读
难度系数:0.65
所属科目:小学语文
阅读短文,回答问题。

只是赏过这么多年的丁香,却一直不解,何以古人发明了丁香结的说法。今年一次春雨,久立窗前,望着斜伸过来的丁香枝条上一柄花蕾。小小的花苞圆圆的,鼓鼓的,恰如衣上的盘花扣。我才恍然,果然是丁香结。

丁香结,这三个字给人许多想象。再联想到那些诗句,真觉得它们负担着解不开的愁怨了。每个人一辈子都有许多不顺心的事,一件完了一件又来。所以丁香结年年都有。结,是解不完的;人生中的问题也是解不完的,不然,岂不太平淡无味了么?

1.“结”查音序应查(     ),查部首应查(     )部。“件”查音序应查(     ),查部首应查(     )部。
2.根据意思在文段中找出相对应的词语。
①忧愁怨恨。(        )
②本指质性平和无味。后多指平平常常,缺乏特色。(         )
3.文段中写道“丁香结,这三个字给人许多想象。”请结合课文和你自己的理解,谈谈“丁香结”给了你什么样的想象。
_________________________________________
4.“结,是解不完的;人生中的问题也是解不完的,不然,岂不太平淡无味了么?”这句话在文段中是什么意思?请写下你自己的理解。
_________________________________________
5.丁香幽雅美丽,又被人们赋予了许多情感,许多诗句中都有丁香这个意象。请你写几句与丁香有关的诗句。
_________________________________________
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交