学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:小学数学
当当在计算“12+1×3×2+32、22+2×5×2+52、42+4×6×2+62 …”这样的算式时,她用“数形结合”的方法来探索:用算式中的数分别构造两个正方形和两个长方形。她发现“这四个图形的面积相加正好是大正方形的面积”(如图所示)。
   

由此得出:
图①:12+1×3×2+32=42
图②:22+2×5×2+52=72
图③:42+4×6×2+62=102
(1)根据当当发现的规律填空:
32+3×5×2+52=(       )。
162+16×19×2+192=(       )。
(2)你能根据当当发现的规律,把如图这个正方形分成四块,并用算式表示出来吗?
       )=92
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交