问题1:两个相邻自然数相乘,积的末位数学有什么特征?
(1)探究:请你在下框中举一些例子进行观察、比较。要从简单开始,有序思考寻找规律。
(2)发现:两个相邻自然数相乘,积的末位数字的特征是( )。
(3)应用:①下面四个选项中,只有选项( )是两个相邻自然数的乘积。
A.62 B.123 C.756 D.1416
②它是两个相邻自然数( )和( )的乘积。
问题2:两个相邻自然数相加或相乘,它们的和与积有什么联系?
(4)再探究:请你在下表中进行观察、比较,寻找联系。
相邻自然数 | 1与2 | 2与3 | 3与4 | … | 9与10 | n与 |
和 | 3 | 5 | 7 | 1 | 19 | |
积 | 2 | 6 | 12 | 1 | 90 |
①再观察:下图大正方形是由四个相同的小长方形拼接而成,你能找到n与的“和”、“积”吗?(在图上标出来)
②我发现,n与的“和”、“积”的关系是:______。(可用含有字母的式子表示出来)
【反思】
当你解决此题时,是不是觉得很神奇呢?原来复杂的问题也可以通过画图、转换等探索,而变得简单有趣。只要真正热爱数学,你就能感受到学习的无穷魅力。
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2