(1)把图形①绕点B逆时针旋转90°,画出旋转后的图形,旋转后点A的对应点的位置用数对表示是( )。
(2)图形①和旋转后的图形组合成了一个新的图形,画出这个组合图形的对称轴。
(3)图形②的圆心在点C的( )偏( )( )°方向上。
(4)把图形②按1∶2的比缩小,画出缩小后的图形。缩小后的图形面积是原来图形面积的。
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2