(1)以等边三角形的中心点为圆心画圆,根据所画的圆与等边三角形各边交点的个数情况,可以画出不同的圆,请你试着画一画并填空。
(2)连接交点与中心点,最多有( )条相等的线段。
(3)如果分别以正方形、正五边形、正六边形的中心点为圆心画圆,连接交点与中心点,最多有多少条相等的线段?试着画一画并填表。
图形 | …… | ||||||
最多相等线段的条数 | ( ) | ( ) | ( ) | ( ) | ( ) | …… | ( ) |
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2