杜甫之所以能有集大成之成就,是因为他有可以集大成之容量。而其所以能有集大成之容量,最重要的因素,乃在于他生而禀有一种极为难得的健全才性——那就是他的博大、均衡与正常。杜甫是一位感性与理性兼长并美的诗人,他一方面具有极大极强的感性,可以深入到他接触的任何事物,把握住他所欲攫取的事物之精华;另一方面又有着极清明周至的理性,足以脱出于一切事物的蒙蔽与局限,做到博观兼美而无所偏失。
这种优越的禀赋表现于他的诗中,第一点最可注意的成就,便是其汲取之博与途径之正。就诗歌体式风格方面而言,古今长短各种诗歌他都能深入撷取尽得其长,而且不为一体所限,更能融会运用,开创变化,千汇万状而无所不工。我们看他《戏为六绝句》之论诗,以及与当时诸大诗人,如李白、高适、岑参、王维、孟浩然等,酬赠怀念的诗篇中论诗的话,都可看到杜甫采择与欣赏的方面之广;而自其《饮中八仙歌》《曲江三章》《同谷七歌》等作中,则可见到他对各种诗体运用变化之神奇工妙;又如从《自京赴奉先县咏怀五百字》《北征》及“三吏”“三别”等五古之作中,可看到杜甫自汉魏五言古诗变化而出的一种新面貌。就诗歌内容方面而言,杜甫更是无论妍媸巨细,悲欢忧喜,宇宙的一切人物情态,都能随物赋形,淋漓尽致地收罗笔下而无所不包,如写青莲居士之“飘然思不群”,写空谷佳人之“日暮倚修竹”;写丑拙则“袖露两肘”,写工丽则“燕子风斜”;写玉华宫之荒寂,予人以一片沉哀悲响;写洗兵马之欢忭,写出一片欣奋祝愿之情、其涵蕴之博与变化之多,都足以为其禀赋之博大、均衡与正常的证明。
其次值得注意的,则是杜甫严肃中之幽默与担荷中之欣赏,我以为每一位诗人对于其所面临的悲哀与艰苦,都各有其不同的反应态度,如渊明之任化,太白之腾跃,摩诘之禅解,子厚之抑敛。东坡之旷观,六一之遣玩,都各因其才气性情而有所不同,然大别之,不过为对悲苦之消融与逃避。其不然者,则如灵均之怀沙自沉,乃完全为悲苦所击败而毁命丧生,然而杜甫却独能以其健全的才性,表现为面对悲苦的正视与担荷。所以天宝的乱离,在当时诗人中,唯杜甫反映者为独多,这正因杜甫独具一份担荷的力量,所以才能使大时代的血泪,都成为了他天才培育的浇灌,而使其有如此强大的担荷之力量的,则端赖他所有的一份幽默与欣赏的余裕。他一方面有极主观的深入的感情,一方面又有极客观的从容的观赏,如著名的《北征》诗,于饱写沿途之人烟萧瑟、所遇被伤、呻吟流血之余,却忽然笔锋一转,竟而写起青云之高兴,幽事之可悦,山果之红如丹砂,黑如点漆,而于归家后,又复于饥寒凛冽之中,大写其幼女晓妆一片娇痴之态。此外,杜甫虽终生过着艰苦的生活,而其诗体中却往往有“戏为”“戏赠”“戏作”等字样,凡此种种,都说明杜甫才性之健全,所以才能有严肃中之幽默与担荷中之欣赏,相反而相成的两方面的表现。这种复杂的综合,足以为其禀赋之博大、均衡与正常的又一证明。
(摘编自叶嘉莹《论杜甫七律之演进及其承先启后之成就》)
1.下列关于原文内容的理解和分析,不正确的一项是A.杜甫有一种难得的健全才性,能兼容感性与理性,对事物进行综合全面的把握。 |
B.从杜甫论诗作品中,可以看出他对古今长短各种诗歌的体式风格都有正面评价。 |
C.杜甫的诗歌涵括范围非常广泛,善于以变化的笔触,表现社会生活和人情物态。 |
D.对于天宝年间的乱离,杜甫在诗中既有主观感情的投入,又有客观视角的关照。 |
A.文章用先总论后分论的结构,论证健全才性是杜甫取得集大成成就的重要因素。 |
B.文章从体式风格和内容两方面,来论证杜甫诗歌创作的汲取之博与途径之正。 |
C.文章在论证诗人对待悲苦的态度时,将杜甫和陶渊明、屈原等诗人作了对比。 |
D.文章论证了杜甫所以对时代苦难有担荷力量,是因为他广泛汲取了前人传统。 |
A.杜甫之前的诗人,或以感性见长,或以理性见长,至杜甫方能二者兼备。 |
B.杜甫勇于尝试各种诗体,在七言律诗上谨守传统,在五言古诗上则作出革新。 |
C.对逃避、被击败与正面担荷这三种回应危机方式,作者在情感态度上一视同仁。 |
D.杜甫诗歌震撼人心的力量,部分来自严肃与幽默之间、担荷与欣赏之间的平衡。 |
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2