学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:高中数学
卡塔尔世界杯小组赛阶段,每个小组4支球队循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例:若三支球队积分相同,同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是,每场比赛的结果相互独立.
(1)若球队在小组赛的3场比赛中胜1场,负2场,求其最终出线的概率.
(2)已知该小组的前三场比赛结果如下:比赛,胜;比赛,胜;比赛,胜.设小组赛阶段球队的积分之和为,求的分布列及期望.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交