①对于中任意两项,在中都存在一项,使;
②对于中任意项,在中都存在两项.使得.
(Ⅰ)若,判断数列是否满足性质①,说明理由;
(Ⅱ)若,判断数列是否同时满足性质①和性质②,说明理由;
(Ⅲ)若是递增数列,且同时满足性质①和性质②,证明:为等比数列.
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2