![](https:///quesimg/Upload/formula/aa359ebff8f5aa8310b3067deaad87f3.png)
x | … | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … | |||
y | … | 1 | 2 | 4 | 1 | 0 | -4 | -2 | -1 | … |
![](https://img./dksih/QBM/editorImg/2022/6/27/11d2895e-44db-41eb-ada3-676accecb4b8.png?resizew=478)
请根据图象解答:
(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点
![](https:///quesimg/Upload/formula/56720e2f2b0ddd72156da495923698da.png)
![](https:///quesimg/Upload/formula/2852ae85cfcc804b3192ea8543c88938.png)
![](https:///quesimg/Upload/formula/4c2e41c64ac5508a9ba27b697122d6d5.png)
![](https:///quesimg/Upload/formula/af264166c2e807ff3cba297019106ae4.png)
(2)【延伸探究】如图2,将过
![](https:///quesimg/Upload/formula/fa3305ac6ef7117a61b3ed9fffb03030.png)
![](https:///quesimg/Upload/formula/eb28194b2e3fde6d395a61e677bc7161.png)
![](https:///quesimg/Upload/formula/c7a4318545898d9b932e0dbd0afbc7a9.png)
①求当n=3时,直线l的解析式和△PAB的面积;
②
![](http://static.xuejinqu.com/images/y-prise.png)
同类型试题
![](http://static.xuejinqu.com/images/medal.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)