学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
已知抛物线轴交于两点,与轴交于点.直线由直线平移得到,与轴交于点.四边形的四个顶点的坐标分别为

(1)填空:______,______;
(2)若点在第二象限,直线与经过点的双曲线有且只有一个交点,求的最大值;
(3)当直线与四边形、抛物线都有交点时,存在直线,对于同一条直线上的交点,直线与四边形的交点的纵坐标都不大于它与抛物线的交点的纵坐标.
①当时,直接写出的取值范围;
②求的取值范围.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交