学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:初中数学
【生活情境】
为美化校园环境,某学校根据地形情况,要对景观带中一个长,宽的长方形水池进行加长改造(如图①,改造后的水池仍为长方形,以下简称水池1),同时,再建造一个周长为的矩形水池(如图②,以下简称水池2).

【建立模型】
如果设水池的边加长长度,加长后水池1的总面积为,则关于的函数解析式为:;设水池2的边的长为,面积为,则关于的函数解析式为:,上述两个函数在同一平面直角坐标系中的图像如图③.

【问题解决】
(1)若水池2的面积随长度的增加而减小,则长度的取值范围是_________(可省略单位),水池2面积的最大值是_________
(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的值是_________;
(3)当水池1的面积大于水池2的面积时,的取值范围是_________;
(4)在范围内,求两个水池面积差的最大值和此时的值;
(5)假设水池的边的长度为,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积关于的函数解析式为:.若水池3与水池2的面积相等时,有唯一值,求的值.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交