![](https:///quesimg/Upload/formula/ce4cba95fc7d4853a243f8e3fb20ce70.png)
求作:线段BP,使得点P在直线CD上,且∠ABP=
![](https:///quesimg/Upload/formula/251aa4138b55ae9d5dc3c80c48dc77b1.png)
作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作线段.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)
(2)完成下面的证明.
证明:∵CD∥AB,
∴∠ABP= .
∵AB=AC,
∴点B在⊙A上.
又∵∠BPC=
![](https:///quesimg/Upload/formula/f89eef3148f2d4d09379767b4af69132.png)
∴∠ABP=
![](https:///quesimg/Upload/formula/f89eef3148f2d4d09379767b4af69132.png)
![](https://img./dksih/QBM/2020/7/19/2509031272955904/2509164014510080/STEM/4caadca633df4f02af9fa4a407484d45.png?resizew=163)
![](http://static.xuejinqu.com/images/y-prise.png)
同类型试题
![](http://static.xuejinqu.com/images/medal.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)