(1)求该抛物线的表达式;
(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;
(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由.
参考:若点、,则线段的中点的坐标为.
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2