如果函数满足:对于自变量取值范围内的任意,,
(1)若,都有,则称是增函数;
(2)若,都有,则称是减函数.
例题:证明函数是增函数.
证明:任取,且,
则
∵且,
∴,
∴,即,
∴函数是增函数.
根据以上材料解答下列问题:
(1)函数,,,_______,_______;
(2)猜想是函数_________(填“增”或“减”),并证明你的猜想.
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2