![](https:///quesimg/Upload/formula/0cdb9d8425d73a68731f30e0c0e22260.png)
![](https:///quesimg/Upload/formula/15c0dbe3c080c4c4636c64803e5c1f76.png)
![](https:///quesimg/Upload/formula/0005e1ef60f6ddc5f9a83e3de1ef3b2e.png)
![](https://img./dksih/QBM/2021/6/26/2751478865797120/2752673953710080/STEM/c7eaf54e-b444-4079-b54a-323a8e6a0989.png?resizew=164)
解:相等,在
![](https:///quesimg/Upload/formula/15c0dbe3c080c4c4636c64803e5c1f76.png)
![](https:///quesimg/Upload/formula/0005e1ef60f6ddc5f9a83e3de1ef3b2e.png)
![](https:///quesimg/Upload/formula/0a127eecc051e9308f9e708b7df53533.png)
![](https:///quesimg/Upload/formula/4e365b4a6fc8286a79888b1b2bbef5ea.png)
![](https:///quesimg/Upload/formula/2a30f3a8b673cc28bd90c50cf1a35281.png)
![](https:///quesimg/Upload/formula/a0ed1ec316bc54c37c4286c208f55667.png)
![](https:///quesimg/Upload/formula/63b42667da10bb83088c5553eaaddfb7.png)
![](https:///quesimg/Upload/formula/fad6fa1c37c33cb40048b7bd3c5cbe6e.png)
![](https:///quesimg/Upload/formula/26ddb6257419fad3c1783880fc10f64d.png)
![](https:///quesimg/Upload/formula/2de0d10ef8b748d4531250c37c5d3f9e.png)
![](https:///quesimg/Upload/formula/946c16d99496d31ce4d87301a4793393.png)
![](https:///quesimg/Upload/formula/f3411384689995f6c3ff4108d1ffcbad.png)
又
![](https:///quesimg/Upload/formula/77708d312877dedd42d34da4fd9b3ef7.png)
![](https:///quesimg/Upload/formula/1b875ca7389cd6dff6dcf3a5e8a7a11e.png)
![](https:///quesimg/Upload/formula/cb855da833db32b6f79ba8f833a889e1.png)
【类比探究】问题①,如图2,在正方形
![](https:///quesimg/Upload/formula/411b38a18046fea8e9fab1f9f9b80a5f.png)
![](https:///quesimg/Upload/formula/d631f45bc652539853f236952afa5bbf.png)
![](https:///quesimg/Upload/formula/686171942bd7698035016c732db43b63.png)
![](https:///quesimg/Upload/formula/fc11331a7b2d2619b40ee6d34c3bd620.png)
![](https:///quesimg/Upload/formula/68a83fdd2ba72a2dba0b6b10bb3e06b9.png)
![](https:///quesimg/Upload/formula/a25c28359f8d8da9eaf4672a6cf8ae4f.png)
![](https://img./dksih/QBM/2021/6/26/2751478865797120/2752673953710080/STEM/bbed999a-b134-4063-9bb0-33adc14d6c21.png?resizew=149)
解:过点
![](https:///quesimg/Upload/formula/2a30f3a8b673cc28bd90c50cf1a35281.png)
![](https:///quesimg/Upload/formula/4b6cc3789c0e9b7d1226aa0de3327599.png)
![](https:///quesimg/Upload/formula/a0ed1ec316bc54c37c4286c208f55667.png)
![](https:///quesimg/Upload/formula/6aa2b5e09f8ec785c59900a529390a02.png)
请将余下的求解步骤补充完整.
【拓展应用】问题②,如图3,在正方形
![](https:///quesimg/Upload/formula/411b38a18046fea8e9fab1f9f9b80a5f.png)
![](https:///quesimg/Upload/formula/8b1f13007c6d134c50004c62dc240707.png)
![](https:///quesimg/Upload/formula/7f9e8449aad35c5d840a3395ea86df6d.png)
![](https:///quesimg/Upload/formula/c5db41a1f31d6baee7c69990811edb9f.png)
![](https:///quesimg/Upload/formula/2a30f3a8b673cc28bd90c50cf1a35281.png)
![](https:///quesimg/Upload/formula/fc11331a7b2d2619b40ee6d34c3bd620.png)
![](https:///quesimg/Upload/formula/d40b319212a7e7528b053e1c7097e966.png)
![](https:///quesimg/Upload/formula/274cf35acb4a1748d15c39d15a9bea7b.png)
![](https:///quesimg/Upload/formula/d004d2d115b477ade6af7ddb93db0df8.png)
![](https:///quesimg/Upload/formula/d7e64c953aaf341e772a5fe776fbc78a.png)
![](https://img./dksih/QBM/2021/6/26/2751478865797120/2752673953710080/STEM/4d0ce6c2-0272-4249-ab0b-53d2542fbc86.png?resizew=165)
![](http://static.xuejinqu.com/images/y-prise.png)
同类型试题
![](http://static.xuejinqu.com/images/medal.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)