(1)求A,B两点的坐标及直线AC的表达式;
(2)P是线段AC上一动点(P与A,C不重合),过点P作轴的平行线交抛物线于点E,求面积的最大值;
(3)点H是抛物线上一动点,在轴上是否存在点F,使得四个点为顶点的四边形是平行四边形?如果存在请直接写出所有满足条件的点F坐标;如果不存在,请说明理由.
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2