学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.15
所属科目:初中数学
如图,在△ABC中,AB=2,AC=BC=
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出ABC三点的坐标;
(2)求过ABC三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,SABD=SABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′、B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以AB′为直径的圆上(解答过程如果有需要时,请参看阅读材料).

附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=xx≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
x1=1时,即y2=1,
y1=1,y2=-1.
x2=3,即y2=3,
y3=3 ,y4=-3.
所以,原方程的解是y1=1,y2=-1,y3= 3,y4=- 3.
再如,可设,用同样的方法也可求解.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交