(1)求抛物线的顶点坐标;
(2)已知实数,请证明:≥,并说明为何值时才会有;
(3)若抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线,设A(m,y1))B(n,y2)是C2上两个不同点,且满足,m>0,n<0. 用含有的表达式表示出△的面积,并求出的最小值及取最小值时一次函数的函数解析式.
(参考公式:在平面直角坐标系中,若,,则,两点间的距离为)
同类型试题
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2