1)对于任意两个数
![](https:///quesimg/Upload/formula/2c3f48f725b0fe284a6cdc23c345d369.png)
当
![](https:///quesimg/Upload/formula/481ee0d1e39e92a4732eea90225eb94c.png)
![](https:///quesimg/Upload/formula/432d77fe5ad3032d59a237dd94c8a638.png)
当
![](https:///quesimg/Upload/formula/697c3d4b11fc2ae913cc27b6b63fc199.png)
![](https:///quesimg/Upload/formula/1f22fec5a381ae8aca93d876e54c79de.png)
当
![](https:///quesimg/Upload/formula/e4f7bea84b44a1dd19c1d3682688c7b6.png)
![](https:///quesimg/Upload/formula/c6a46e678bf9d2df5ad4c782b3dc22f5.png)
反过来也成立.因此,我们把这种比较两个数大小的方法叫做“求差法”.
2)对于比较两个正数
![](https:///quesimg/Upload/formula/663a61ad241d5d874c9a9362f0ee917c.png)
∵
![](https:///quesimg/Upload/formula/3b16d88920d1bd8c826a0d4980efb737.png)
![](https:///quesimg/Upload/formula/33ecda7bfb0a2043306bf7707a136ad0.png)
∴
![](https:///quesimg/Upload/formula/a9210d7ed68b5efcff839ba163b52ad3.png)
![](https:///quesimg/Upload/formula/46fe068addf8b4458157970b73be8601.png)
当
![](https:///quesimg/Upload/formula/35112f17924afc79c0d0765ee518a0cc.png)
![](https:///quesimg/Upload/formula/481ee0d1e39e92a4732eea90225eb94c.png)
![](https:///quesimg/Upload/formula/432d77fe5ad3032d59a237dd94c8a638.png)
当
![](https:///quesimg/Upload/formula/e2dbf8fa363d0091945d555081e820e9.png)
![](https:///quesimg/Upload/formula/697c3d4b11fc2ae913cc27b6b63fc199.png)
![](https:///quesimg/Upload/formula/1f22fec5a381ae8aca93d876e54c79de.png)
当
![](https:///quesimg/Upload/formula/cb667ba7642f8a7528c3afe75d0f126e.png)
![](https:///quesimg/Upload/formula/e4f7bea84b44a1dd19c1d3682688c7b6.png)
![](https:///quesimg/Upload/formula/c6a46e678bf9d2df5ad4c782b3dc22f5.png)
解决下列实际问题:
(1)课堂上,老师让同学们制作几种几何体,张丽同学用了3张
![](https:///quesimg/Upload/formula/6b553e2a281714677e29a5e97dd7d5a3.png)
![](https:///quesimg/Upload/formula/1ce9b2777caae9031fbbfc94ee268a2c.png)
![](https:///quesimg/Upload/formula/6b553e2a281714677e29a5e97dd7d5a3.png)
![](https:///quesimg/Upload/formula/1ce9b2777caae9031fbbfc94ee268a2c.png)
![](https:///quesimg/Upload/formula/6b553e2a281714677e29a5e97dd7d5a3.png)
![](https:///quesimg/Upload/formula/1ce9b2777caae9031fbbfc94ee268a2c.png)
![](https:///quesimg/Upload/formula/2b21208364124b5c477b2ff8df1c2e8f.png)
![](https:///quesimg/Upload/formula/5c3ff0b0fea1cb642d3f6be77a1ff32f.png)
![](https:///quesimg/Upload/formula/a6eaa137a2290a9a9ec7ad635d17dbb6.png)
①
![](https:///quesimg/Upload/formula/5a5e412f202bae978ad553184740e839.png)
![](https:///quesimg/Upload/formula/437f7b84319e2a7d862a8b8fdfe5affe.png)
②请你分析谁用的纸面积最大.
(2)如图1所示,要在燃气管道l上修建一个泵站,分别向A.B两镇供气,已知A.B到l的距离分别是
![](https:///quesimg/Upload/formula/dd837a510f6d79f4f49d4a89cf688268.png)
![](https:///quesimg/Upload/formula/0ea7f386fe7702e3ee5e5d4b7558f29e.png)
![](https:///quesimg/Upload/formula/e22d7e4ed9a7103f8fd2e7ea6ae05ddd.png)
![](https://img./dksih/QBM/editorImg/2023/11/19/4b7ce4ab-c5a6-46a7-b189-ea95ebb3e630.jpg?resizew=366)
方案一:如图2所示,
![](https:///quesimg/Upload/formula/904b21bba351171abdc8482a906499d8.png)
![](https:///quesimg/Upload/formula/28461e0b8bf621aa1fa9bbf83fde5602.png)
方案二:如图3所示,点
![](https:///quesimg/Upload/formula/e7c314398e26ffc7164b82946eeb4273.png)
![](https:///quesimg/Upload/formula/e663220a66eff19da6a71e46b397db2e.png)
![](https:///quesimg/Upload/formula/5028e85bfff95fb247ca70dc45d39c22.png)
①在方案一中,
![](https:///quesimg/Upload/formula/7999465d0e871febde66296a0cbf058c.png)
![](https:///quesimg/Upload/formula/e5fe30c67ac20cd4e8b9cc2d0d420a7b.png)
②在方案二中,
![](https:///quesimg/Upload/formula/af9bbe98100c8067ff36ac536d043a85.png)
![](https:///quesimg/Upload/formula/e5fe30c67ac20cd4e8b9cc2d0d420a7b.png)
③请你分析要使铺设的输气管道较短,应选择方案一还是方案二.
![](http://static.xuejinqu.com/images/y-prise.png)
同类型试题
![](http://static.xuejinqu.com/images/medal.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)
y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2
![](http://static.xuejinqu.com/images/avatar.png)
![](http://static.xuejinqu.com/images/avatar.png)