学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.65
所属科目:初中数学
小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.
   (1)温故:如图 1,在ABC中,AD⊥BC 于点D,正方形PQMN 的边QM在BC上,顶点P ,N 分别在AB, AC上,若BC=6 ,AD=4,求正方形 PQMN的边长.
  (2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图 2,任意画ABC,在AB上任取一点P′,画正方形 P′Q′M′N′ ,使Q′,M′在BC边上, N′在ABC 内,连结B N′ 并延长交AC 于点N,画NM⊥BC于点M,NP⊥NM 交AB于点P,PQ⊥BC 于点Q,得到四边形 PQMN.小波把线段BN 称为“波利亚线”.
 (3)推理:证明图2 中的四边形  PQMN 是正方形.
 (4)拓展:在(2)的条件下,于波利业线B N 上截取NE=NM ,连结EQ ,EM(如图 3).当tan∠NBM=  时,猜想∠QEM的度数,并尝试证明.
请帮助小波解决“温故”、“推理”、“拓展”中的问题.
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交