学进去-教育应平等而普惠
试题
类型:解答题
难度系数:0.64
所属科目:初中数学
如图,∠C=90°,点AB在∠C的两边上,CA=30,CB=20,连结AB.点P
B出发,以每秒4个单位长度的速度沿BC方向运动,到点C停止.当点PBC
两点不重合时,作PDBCABD,作DEACEF为射线CB上一点,且∠CEF=∠ABC.设
P的运动时间为x(秒).
(1)用含有x的代数式表示CF的长.(2分)
(2)求点F与点B重合时x的值.(2分)
(3)当点F在线段CB上时,设四边形DECP与四边形DEFB重叠部分图形的面积为y(平方单位).求yx之间的函数关系式.(3分)
(4)当x为某个值时,沿PD将以DEFB为顶点的四边形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合上述条件的x值.(3分)
编辑解析赚收入
收藏
|
有奖纠错

同类型试题

优质答疑

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19

y = sin x, x∈R, y∈[–1,1],周期为2π,函数图像以 x = (π/2) + kπ 为对称轴
y = arcsin x, x∈[–1,1], y∈[–π/2,π/2]
sin x = 0 ←→ arcsin x = 0
sin x = 1/2 ←→ arcsin x = π/6
sin x = √2/2 ←→ arcsin x = π/4
sin x = 1 ←→ arcsin x = π/2

用户名称
2019-09-19
我要答疑
编写解析
解析:

奖学金将在审核通过后自动发放到帐

提交
我要答疑
我要答疑:
提交