全一卷
1.设,则( )
A. | B. | C. | D. |
2.已知集合,,则( )
A. | B. | C. | D. |
3.已知命题﹔命题﹐,则下列命题中为真命题的是( )
A. | B. | C. | D. |
4.设函数,则下列函数中为奇函数的是( )
A. | B. | C. | D. |
5.在正方体中,P为的中点,则直线与所成的角为( )
A. | B. | C. | D. |
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )
A.60种 | B.120种 | C.240种 | D.480种 |
7.把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )
A. | B. |
C. | D. |
8.在区间与中各随机取1个数,则两数之和大于的概率为( )
A. | B. | C. | D. |
9.魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点,,在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高( )
A.表高 | B.表高 |
C.表距 | D.表距 |
10.设,若为函数的极大值点,则( )
A. | B. | C. | D. |
11.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )
A. | B. | C. | D. |
12.设,,.则( )
A. | B. | C. | D. |
13.已知双曲线的一条渐近线为,则C的焦距为_________ .
14.已知向量,若,则__________ .
15.记的内角A,B,C的对边分别为a,b,c,面积为,,,则________ .
16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________ (写出符合要求的一组答案即可).
17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
旧设备 | 9.8 | 10.3 | 10.0 | 10.2 | 9.9 | 9.8 | 10.0 | 10.1 | 10.2 | 9.7 |
新设备 | 10.1 | 10.4 | 10.1 | 10.0 | 10.1 | 10.3 | 10.6 | 10.5 | 10.4 | 10.5 |
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
18.如图,四棱锥的底面是矩形,底面,,为的中点,且.
(1)求;
(2)求二面角的正弦值.
(1)求;
(2)求二面角的正弦值.
19.记为数列的前n项和,为数列的前n项积,已知.
(1)证明:数列是等差数列;
(2)求的通项公式.
(1)证明:数列是等差数列;
(2)求的通项公式.
20.设函数,已知是函数的极值点.
(1)求a;
(2)设函数.证明:.
(1)求a;
(2)设函数.证明:.
21.已知抛物线的焦点为,且与圆上点的距离的最小值为.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
(1)求;
(2)若点在上,是的两条切线,是切点,求面积的最大值.
22.在直角坐标系中,的圆心为,半径为1.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
(1)写出的一个参数方程;
(2)过点作的两条切线.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
23.已知函数.
(1)当时,求不等式的解集;
(2)若,求a的取值范围.
(1)当时,求不等式的解集;
(2)若,求a的取值范围.