全一卷
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )
A.{x|2<x≤3} | B.{x|2≤x≤3} |
C.{x|1≤x<4} | D.{x|1<x<4} |
2.( )
A.1 | B.−1 |
C.i | D.−i |
3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )
A.120种 | B.90种 |
C.60种 | D.30种 |
4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
A.20° | B.40° |
C.50° | D.90° |
5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )
A.62% | B.56% |
C.46% | D.42% |
6.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( )
A.1.2天 | B.1.8天 |
C.2.5天 | D.3.5天 |
7.已知P是边长为2的正六边形ABCDEF内的一点,则 的取值范围是( )
A. | B. |
C. | D. |
8.若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )
A. | B. |
C. | D. |
9.已知曲线.( )
A.若m>n>0,则C是椭圆,其焦点在y轴上 |
B.若m=n>0,则C是圆,其半径为 |
C.若mn<0,则C是双曲线,其渐近线方程为 |
D.若m=0,n>0,则C是两条直线 |
10.下图是函数y= sin(ωx+φ)的部分图像,则sin(ωx+φ)= ( )
A. | B. | C. | D. |
11.已知a>0,b>0,且a+b=1,则( )
A. | B. |
C. | D. |
12.信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0 |
B.若n=2,则H(X)随着的增大而增大 |
C.若,则H(X)随着n的增大而增大 |
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y) |
13.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________ .
14.将数列{2n–1}与{3n–2}的公共项从小到大排列得到数列{an},则{an}的前n项和为________ .
15.某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=,,EF=12 cm,DE=2 cm,A到直线DE和EF的距离均为7 cm,圆孔半径为1 cm,则图中阴影部分的面积为________ cm2.
16.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________ .
17.在①,②,③这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由.
问题:是否存在,它的内角的对边分别为,且,,________?
注:如果选择多个条件分别解答,按第一个解答计分.
问题:是否存在,它的内角的对边分别为,且,,________?
注:如果选择多个条件分别解答,按第一个解答计分.
18.已知公比大于的等比数列满足.
(1)求的通项公式;
(2)记为在区间中的项的个数,求数列的前项和.
(1)求的通项公式;
(2)记为在区间中的项的个数,求数列的前项和.
19.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
20.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;
(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
(1)证明:l⊥平面PDC;
(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
21.已知函数.
(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;
(2)若不等式恒成立,求a的取值范围.
(1)当时,求曲线在点处的切线与两坐标轴围成的三角形的面积;
(2)若不等式恒成立,求a的取值范围.
22.已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.