学进去-教育应平等而普惠

2020年全国统一高考数学试卷(文科)(新课标Ⅱ)

类型:高考真题
年份:2020
年级:高三
题数:23
收藏试卷
下载试卷

全一卷

难度系数: 难度系数:0.94
答案解析 答案解析
收藏
有奖纠错
1.已知集合A={x||x|<3,xZ},B={x||x|>1,xZ},则AB=(       
A.B.{–3,–2,2,3)
C.{–2,0,2}D.{–2,2}
难度系数: 难度系数:0.94
答案解析 答案解析
收藏
有奖纠错
2.(1–i)4=(       
A.–4B.4
C.–4iD.4i
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
3.如图,将钢琴上的12个键依次记为a1a2,…,a12.设1≤i<j<k≤12.若kj=3且ji=4,则称aiajak为原位大三和弦;若kj=4且ji=3,则称aiajak为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为(       
A.5B.8C.10D.15
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者(       
A.10名B.18名C.24名D.32名
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
5.已知单位向量的夹角为60°,则在下列向量中,与垂直的是(       
A.B.C. D.
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
6.记Sn为等比数列{an}的前n项和.若a5a3=12,a6a4=24,则=(       
A.2n–1B.2–21–nC.2–2n–1D.21–n–1
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
7.执行右面的程序框图,若输入的k=0,a=0,则输出的k为(       
A.2B.3C.4D.5
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为(       
A.B.C.D.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
9.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为(       
A.4B.8C.16D.32
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
10.设函数,则       
A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减
C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
11.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为(       
A.B.C.1D.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
12.若,则(       
A.B.C.D.
难度系数: 难度系数:0.94
答案解析 答案解析
收藏
有奖纠错
13.若,则__________
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
14.记为等差数列的前n项和.若,则__________
难度系数: 难度系数:0.85
答案解析 答案解析
收藏
有奖纠错
15.若xy满足约束条件的最大值是__________
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
16.设有下列四个命题:
p1:两两相交且不过同一点的三条直线必在同一平面内.
p2:过空间中任意三点有且仅有一个平面.
p3:若空间两条直线不相交,则这两条直线平行.
p4:若直线l平面α,直线m⊥平面α,则ml.
则下述命题中所有真命题的序号是__________.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
17.△ABC的内角ABC的对边分别为abc,已知
(1)求A
(2)若,证明:△ABC是直角三角形.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xiyi)(i=1,2,…,20),其中xiyi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xiyi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=≈1.414.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
19.已知椭圆C1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1AB两点,交C2CD两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1C2的标准方程.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
20.如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,MN分别为BCB1C1的中点,PAM上一点.过B1C1P的平面交ABE,交ACF

(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=,求四棱锥BEB1C1F的体积.
难度系数: 难度系数:0.40
答案解析 答案解析
收藏
有奖纠错
21.已知函数fx)=2lnx+1.
(1)若fx)≤2x+c,求c的取值范围;
(2)设a>0时,讨论函数gx)=的单调性.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
22.已知曲线C1C2的参数方程分别为C1θ为参数),C2t为参数).
(1)将C1C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
难度系数: 难度系数:0.65
答案解析 答案解析
收藏
有奖纠错
23.已知函数.
(1)当时,求不等式的解集;
(2)若,求a的取值范围.
试卷分析
试题总体分析
难易度分析
知识点分析