全一卷
1.设,则=
A.2 | B. | C. | D.1 |
2.已知集合,则
A. | B. | C. | D. |
3.已知,则
A. | B. | C. | D. |
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
A.165 cm | B.175 cm | C.185 cm | D.190cm |
5.函数f(x)=在[—π,π]的图像大致为
A. | B. |
C. | D. |
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生 | B.200号学生 | C.616号学生 | D.815号学生 |
7.tan255°=
A.-2- | B.-2+ | C.2- | D.2+ |
8.已知非零向量满足,且,则与的夹角为
A. | B. | C. | D. |
9.如图是求的程序框图,图中空白框中应填入
A.A= | B.A= | C.A= | D.A= |
10.双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为
A.2sin40° | B.2cos40° | C. | D. |
11.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=
A.6 | B.5 | C.4 | D.3 |
12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为
A. | B. | C. | D. |
13.曲线在点处的切线方程为___________ .
14.记Sn为等比数列{an}的前n项和.若,则S4=___________ .
15.函数的最小值为___________ .
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________ .
17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
满意 | 不满意 | |
男顾客 | 40 | 10 |
女顾客 | 30 | 20 |
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
18.记Sn为等差数列{an}的前n项和,已知S9=-a5.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
(1)若a3=4,求{an}的通项公式;
(2)若a1>0,求使得Sn≥an的n的取值范围.
19.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
20.已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
(1)证明:f′(x)在区间(0,π)存在唯一零点;
(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.
21.已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
(1)若A在直线x+y=0上,求⊙M的半径.
(2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
22.在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.已知a,b,c为正数,且满足abc=1.证明:
(1);
(2).
(1);
(2).