全一卷
1.若集合,,则
A. | B. |
C. | D. |
2.圆心为且过原点的圆的方程是
A. |
B. |
C. |
D. |
3.下列函数中为偶函数的是
A. | B. | C. | D. |
4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有人,则该样本的老年教师人数为( )
类别 | 人数 |
老年教师 | |
中年教师 | |
青年教师 | |
合计 |
A. | B. | C. | D. |
5.执行如图所示的程序框图,输出的的值为( ).
A. | B. | C. | D. |
6.设,是非零向量,“”是“”的
A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
7.某四棱锥的三视图如上图(右)所示,该四棱锥最长棱棱长为
A.1 | B. | C. | D.2 |
8.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.
注:“累计里程“指汽车从出厂开始累计行驶的路程
在这段时间内,该车每千米平均耗油量为( )
加油时间 | 加油量(升) | 加油时的累计里程(千米) |
年月日 | ||
年月日 |
注:“累计里程“指汽车从出厂开始累计行驶的路程
在这段时间内,该车每千米平均耗油量为( )
A.升 | B.升 | C.升 | D.升 |
9.复数的实部为_________ .
10.,,三个数中最大数的是 .
11.在中,,,,则_________ .
12.已知是双曲线()的一个焦点,则______ .
13.如图,及其内部的点组成的集合记为,为中任意一点,则的最大值为_______ .
14.
高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班的3位学生.
从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是
②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是
15.已知函数.
(1)求的最小正周期.
(2)求在区间上的最小值.
(1)求的最小正周期.
(2)求在区间上的最小值.
16.已知等差数列满足,.
(Ⅰ)求的通项公式;
(Ⅱ)设等比数列满足,,问:与数列的第几项相等?
(Ⅰ)求的通项公式;
(Ⅱ)设等比数列满足,,问:与数列的第几项相等?
17.某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买种商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
√ | × | × | × | |
× | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买种商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
18.如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求三棱锥的体积.
(1)求证:平面;
(2)求证:平面平面;
(3)求三棱锥的体积.
19.设函数, .
(1)求的单调区间和极值;
(2)证明:若存在零点,则在区间上仅有一个零点.
(1)求的单调区间和极值;
(2)证明:若存在零点,则在区间上仅有一个零点.
20.已知椭圆,过点且不过点的直线与椭圆交于,两点,直线与直线交于点.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若垂直于轴,求直线的斜率;
(Ⅲ)试判断直线与直线的位置关系,并说明理由.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若垂直于轴,求直线的斜率;
(Ⅲ)试判断直线与直线的位置关系,并说明理由.