全一卷
1.已知集合
,则![](https:///quesimg/Upload/formula/b4b9b470218359a4a47be9244980489e.png)
![](https:///quesimg/Upload/formula/77230deeae6df39417156d4438680147.png)
![](https:///quesimg/Upload/formula/b4b9b470218359a4a47be9244980489e.png)
A.![]() | B.![]() | C.![]() | D.![]() |
2.若
,则![](https:///quesimg/Upload/formula/b2d67321ace1e6b3be0fc0e5e8130022.png)
![](https:///quesimg/Upload/formula/47167e67536d48edba2b5a8362650870.png)
![](https:///quesimg/Upload/formula/b2d67321ace1e6b3be0fc0e5e8130022.png)
A.![]() | B.![]() | C.![]() | D.![]() |
3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为
A.![]() | B.![]() | C.![]() | D.![]() |
4.(1+2x2 )(1+x)4的展开式中x3的系数为
A.12 | B.16 | C.20 | D.24 |
5.已知各项均为正数的等比数列
的前4项和为15,且
,则![](https:///quesimg/Upload/formula/fbfc875ca919921e8f63a6fca648561b.png)
![](https:///quesimg/Upload/formula/83cf38189d5cbf627d2b82ac0eb76006.png)
![](https:///quesimg/Upload/formula/045818d119486edbe352b4a6f72d87bd.png)
![](https:///quesimg/Upload/formula/fbfc875ca919921e8f63a6fca648561b.png)
A.16 | B.8 | C.4 | D.2 |
6.已知曲线
在点
处的切线方程为
,则
![](https:///quesimg/Upload/formula/9f52edbec19e3f0a62122c6121ef5c8b.png)
![](https:///quesimg/Upload/formula/74f71e74d95541d4ad0aeeb33b0117a4.png)
![](https:///quesimg/Upload/formula/bebb3b7f47e0decd48e64cb32aaa5903.png)
A.![]() | B.![]() | C.![]() | D.![]() |
7.函数
在
的图像大致为
![](https:///quesimg/Upload/formula/a14319544666dc3309cf3c6430b0a058.png)
![](https:///quesimg/Upload/formula/4695c34aafd1c1ae276f9eddc53a397d.png)
A.![]() | B.![]() | C.![]() | D.![]() |
8.如图,点
为正方形
的中心,
为正三角形,平面
平面
是线段
的中点,则
![](https://img./dksih/QBM/2019/6/8/2221374252220416/2221942626877440/STEM/a1049a2d5f13484a941f1cb12c82e335.png?resizew=231)
![](https:///quesimg/Upload/formula/54a5d7d3b6b63fe5c24c3907b7a8eaa3.png)
![](https:///quesimg/Upload/formula/411b38a18046fea8e9fab1f9f9b80a5f.png)
![](https:///quesimg/Upload/formula/990b4e6a33c821c298dec22cf9fbf76e.png)
![](https:///quesimg/Upload/formula/fa7fb4bb4caccf79639a126064771da5.png)
![](https:///quesimg/Upload/formula/dfaefb10f82b89802bb420b3c41de1bd.png)
![](https:///quesimg/Upload/formula/21037e170bdbb322558e79c40c00b454.png)
![](https://img./dksih/QBM/2019/6/8/2221374252220416/2221942626877440/STEM/a1049a2d5f13484a941f1cb12c82e335.png?resizew=231)
A.![]() ![]() |
B.![]() ![]() |
C.![]() ![]() |
D.![]() ![]() |
9.执行如图所示的程序框图,如果输入的
为
,则输出
的值等于
![](https://img./dksih/QBM/editorImg/2023/1/6/1fad5e39-1d2a-45e9-a913-d02acc3704fe.png?resizew=88)
![](https:///quesimg/Upload/formula/711c92626a97e6b778b3aa86e663ee97.png)
![](https:///quesimg/Upload/formula/5e2c4d12b3a705daab723ab243b6cc88.png)
![](https:///quesimg/Upload/formula/c5873c01192b7d33b7483f444f90b5b0.png)
![](https://img./dksih/QBM/editorImg/2023/1/6/1fad5e39-1d2a-45e9-a913-d02acc3704fe.png?resizew=88)
A.![]() | B.![]() | C.![]() | D.![]() |
10.双曲线C:
=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若
,则△PFO的面积为
![](https:///quesimg/Upload/formula/f5e071ae19b4814274f36e8ef2b7cfbf.png)
![](https:///quesimg/Upload/formula/aa4e290cd7c33b1f76ad7420739d6969.png)
A.![]() | B.![]() | C.![]() | D.![]() |
11.设
是定义域为
的偶函数,且在
单调递减,则
![](https:///quesimg/Upload/formula/09f86f37ec8e15846bd731ab4fcdbacd.png)
![](https:///quesimg/Upload/formula/4aa0df7f1e45f9de29e802c7f19a4f64.png)
![](https:///quesimg/Upload/formula/6ab5e0524def52baf53480b8726784ed.png)
A.![]() |
B.![]() |
C.![]() |
D.![]() |
12.设函数
=sin(
)(
>0),已知
在
有且仅有5个零点,下述四个结论:
![](https:///quesimg/Upload/formula/09f86f37ec8e15846bd731ab4fcdbacd.png)
![](https:///quesimg/Upload/formula/dac0a52c41db73fed0ea21249ddcad19.png)
![](https:///quesimg/Upload/formula/074c228ffc7b1e306f8410afe7bc4b5c.png)
![](https:///quesimg/Upload/formula/09f86f37ec8e15846bd731ab4fcdbacd.png)
![](https:///quesimg/Upload/formula/aebb9595cfebe608e2b3ec06c10421dd.png)
①在(
)有且仅有3个极大值点
②在(
)有且仅有2个极小值点
③在(
)单调递增
④的取值范围是[
)
其中所有正确结论的编号是
A.①④ | B.②③ | C.①②③ | D.①③④ |
13.已知
为单位向量,且
=0,若
,则![](https:///quesimg/Upload/formula/de7bc70dd1c68ced944e85104d0aded5.png)
___________ .
![](https:///quesimg/Upload/formula/0b172cf8d898883d82e973f28c3c3a3e.png)
![](https:///quesimg/Upload/formula/c39d1d88189726ae99c309644fca3494.png)
![](https:///quesimg/Upload/formula/741b532bbafd0c05a8217d2b0d3a7489.png)
![](https:///quesimg/Upload/formula/de7bc70dd1c68ced944e85104d0aded5.png)
14.记Sn为等差数列{an}的前n项和,
,则![](https:///quesimg/Upload/formula/4259345a7b1964a756911dbe0ed9ee42.png)
___________ .
![](https:///quesimg/Upload/formula/62c76ec49801e4efccc4e40e7915eea4.png)
![](https:///quesimg/Upload/formula/4259345a7b1964a756911dbe0ed9ee42.png)
15.设
为椭圆
的两个焦点,
为
上一点且在第一象限.若
为等腰三角形,则
的坐标为___________ .
![](https:///quesimg/Upload/formula/122ba80be450e578bef55b932232e884.png)
![](https:///quesimg/Upload/formula/ee780c3ccc454a2ba89bb67f7e1d6155.png)
![](https:///quesimg/Upload/formula/ac047e91852b91af639feec23a9598b2.png)
![](https:///quesimg/Upload/formula/c5db41a1f31d6baee7c69990811edb9f.png)
![](https:///quesimg/Upload/formula/b42fc33bcfc63ec2f4940ccd3f862400.png)
![](https:///quesimg/Upload/formula/ac047e91852b91af639feec23a9598b2.png)
16.学生到工厂劳动实践,利用
打印技术制作模型.如图,该模型为长方体
挖去四棱锥
后所得的几何体,其中
为长方体的中心,
分别为所在棱的中点,
,
打印所用原料密度为
,不考虑打印损耗,制作该模型所需原料的质量为___________
.
![](https://img./dksih/QBM/2019/6/8/2221374252220416/2221942627098624/STEM/a137d420-065f-4459-b7f0-d3b4869143ff.png)
![](https:///quesimg/Upload/formula/3b3af6f61348fc3cf1e9614916afe3ee.png)
![](https:///quesimg/Upload/formula/6e09725691ee7851f54c0dee86b2bf55.png)
![](https:///quesimg/Upload/formula/1bd3cf0164966a391cd07c53ed87135a.png)
![](https:///quesimg/Upload/formula/1dde8112e8eb968fd042418dd632759e.png)
![](https:///quesimg/Upload/formula/42c2d86d8daea5e652d99fe1c6bc3f9a.png)
![](https:///quesimg/Upload/formula/9c230979a2a5735f9ca821322d422283.png)
![](https:///quesimg/Upload/formula/3b3af6f61348fc3cf1e9614916afe3ee.png)
![](https:///quesimg/Upload/formula/b99fe1c73b3c94c5f6921d7b05c2a59c.png)
![](https:///quesimg/Upload/formula/276509f01529d982ab21e479a4619268.png)
![](https://img./dksih/QBM/2019/6/8/2221374252220416/2221942627098624/STEM/a137d420-065f-4459-b7f0-d3b4869143ff.png)
17.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成
两组,每组100只,其中
组小鼠给服甲离子溶液,
组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
![](https://img./dksih/QBM/editorImg/2023/3/1/e6a7dd69-a460-42a8-b869-f61468824453.png?resizew=400)
记
为事件:“乙离子残留在体内的百分比不低于
”,根据直方图得到
的估计值为
.
(1)求乙离子残留百分比直方图中
的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
![](https:///quesimg/Upload/formula/01c74a907dda6bb7d9d56d009d9df253.png)
![](https:///quesimg/Upload/formula/5963abe8f421bd99a2aaa94831a951e9.png)
![](https:///quesimg/Upload/formula/7f9e8449aad35c5d840a3395ea86df6d.png)
![](https://img./dksih/QBM/editorImg/2023/3/1/e6a7dd69-a460-42a8-b869-f61468824453.png?resizew=400)
记
![](https:///quesimg/Upload/formula/c5db41a1f31d6baee7c69990811edb9f.png)
![](https:///quesimg/Upload/formula/d9be62bd344030a88397561cb7814e29.png)
![](https:///quesimg/Upload/formula/fd85c4d2f793db97480144558d4951fe.png)
![](https:///quesimg/Upload/formula/3c8475172c9f4204498b7e061b7424ad.png)
(1)求乙离子残留百分比直方图中
![](https:///quesimg/Upload/formula/632244ea6931507f8656e1cc3437d392.png)
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
18.
的内角
的对边分别为
,已知
.
(1)求
;
(2)若
为锐角三角形,且
,求
面积的取值范围.
![](https:///quesimg/Upload/formula/0faed94a64b2dcfc6801b4fca0f16675.png)
![](https:///quesimg/Upload/formula/24e0c10fb103930eabd5fa18e8f9bb06.png)
![](https:///quesimg/Upload/formula/76f0649064a085fb74c997fb507a9b6d.png)
![](https:///quesimg/Upload/formula/af30a92eda72d7b4daf2dc17c0c078af.png)
(1)求
![](https:///quesimg/Upload/formula/7f9e8449aad35c5d840a3395ea86df6d.png)
(2)若
![](https:///quesimg/Upload/formula/0faed94a64b2dcfc6801b4fca0f16675.png)
![](https:///quesimg/Upload/formula/4580cc037c0c760c728cdbb74a8154c6.png)
![](https:///quesimg/Upload/formula/0faed94a64b2dcfc6801b4fca0f16675.png)
19.图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
![](https://img./dksih/QBM/2019/6/8/2221374430576640/2221914980196352/STEM/7afdcb7f-7c23-47da-87ca-20188935327d.png)
(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;
(2)求图2中的二面角B−CG−A的大小.
![](https://img./dksih/QBM/2019/6/8/2221374430576640/2221914980196352/STEM/7afdcb7f-7c23-47da-87ca-20188935327d.png)
20.已知函数
.
(1)讨论
的单调性;
(2)是否存在
,使得
在区间
的最小值为
且最大值为1?若存在,求出
的所有值;若不存在,说明理由.
![](https:///quesimg/Upload/formula/aa337ace02677fad883ffbcf21284cc6.png)
(1)讨论
![](https:///quesimg/Upload/formula/4fe7d5809da02c15a43a0e9a898b9086.png)
(2)是否存在
![](https:///quesimg/Upload/formula/632244ea6931507f8656e1cc3437d392.png)
![](https:///quesimg/Upload/formula/4fe7d5809da02c15a43a0e9a898b9086.png)
![](https:///quesimg/Upload/formula/304226ca50149b49702928e44d565964.png)
![](https:///quesimg/Upload/formula/acbc6a613224461ade69362d46550474.png)
![](https:///quesimg/Upload/formula/632244ea6931507f8656e1cc3437d392.png)
21.已知曲线C:y=
,D为直线y=
上的动点,过D作C的两条切线,切点分别为A,B.
(1)证明:直线AB过定点:
(2)若以E(0,
)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
![](https:///quesimg/Upload/formula/e50520e416713b6ef6edbc58d586112b.png)
![](https:///quesimg/Upload/formula/3389f53711264b0acba3ba6019f8b908.png)
(1)证明:直线AB过定点:
(2)若以E(0,
![](https:///quesimg/Upload/formula/533a7b702ada1dd80123e4041271d521.png)
22.如图,在极坐标系
中,
,
,
,
,弧
,
,
所在圆的圆心分别是
,
,
,曲线
是弧
,曲线
是弧
,曲线
是弧
.
![](https://img./dksih/QBM/editorImg/2022/12/5/2e4b405a-a6df-4373-ab7e-67a8ac7ce93f.png?resizew=156)
(1)分别写出
,
,
的极坐标方程;
(2)曲线
由
,
,
构成,若点
在
上,且
,求
的极坐标.
![](https:///quesimg/Upload/formula/c3e5af20b2f8c1fba4470f9650989e51.png)
![](https:///quesimg/Upload/formula/60d295a4cc3a58f9f38ee98337313c81.png)
![](https:///quesimg/Upload/formula/b32159a030f984cf2be09b19189a1904.png)
![](https:///quesimg/Upload/formula/05bbdff244b60f1468abd0e21c72266a.png)
![](https:///quesimg/Upload/formula/63402aa2cc4e5215de52db0fd823477e.png)
![](https:///quesimg/Upload/formula/16d65cecaf8a3dc2953f4109c75a981e.png)
![](https:///quesimg/Upload/formula/ed41d321f4c0717ac5b443aad942d9a7.png)
![](https:///quesimg/Upload/formula/83bb3820bab977db734f4335e4fde720.png)
![](https:///quesimg/Upload/formula/53a948d2f7732d7f03e986c63712089b.png)
![](https:///quesimg/Upload/formula/39907b6d83d155a17dbe9f8b683cfac0.png)
![](https:///quesimg/Upload/formula/a81da5977bda12a2d34462eaddf85b5e.png)
![](https:///quesimg/Upload/formula/4b104090ea2ac34be58a76a4e0e95cb3.png)
![](https:///quesimg/Upload/formula/16d65cecaf8a3dc2953f4109c75a981e.png)
![](https:///quesimg/Upload/formula/7df1d9b712b639c8b6809c9f3ae03706.png)
![](https:///quesimg/Upload/formula/ed41d321f4c0717ac5b443aad942d9a7.png)
![](https:///quesimg/Upload/formula/32efe4eff75508cb93e828c735dcb695.png)
![](https:///quesimg/Upload/formula/83bb3820bab977db734f4335e4fde720.png)
![](https://img./dksih/QBM/editorImg/2022/12/5/2e4b405a-a6df-4373-ab7e-67a8ac7ce93f.png?resizew=156)
(1)分别写出
![](https:///quesimg/Upload/formula/4b104090ea2ac34be58a76a4e0e95cb3.png)
![](https:///quesimg/Upload/formula/7df1d9b712b639c8b6809c9f3ae03706.png)
![](https:///quesimg/Upload/formula/32efe4eff75508cb93e828c735dcb695.png)
(2)曲线
![](https:///quesimg/Upload/formula/ac047e91852b91af639feec23a9598b2.png)
![](https:///quesimg/Upload/formula/4b104090ea2ac34be58a76a4e0e95cb3.png)
![](https:///quesimg/Upload/formula/7df1d9b712b639c8b6809c9f3ae03706.png)
![](https:///quesimg/Upload/formula/32efe4eff75508cb93e828c735dcb695.png)
![](https:///quesimg/Upload/formula/dad2a36927223bd70f426ba06aea4b45.png)
![](https:///quesimg/Upload/formula/ac047e91852b91af639feec23a9598b2.png)
![](https:///quesimg/Upload/formula/60893ffa85550cbd68549e3224a9f57e.png)
![](https:///quesimg/Upload/formula/dad2a36927223bd70f426ba06aea4b45.png)
23.设
,且
.
(1)求
的最小值;
(2)若
成立,证明:
或
.
![](https:///quesimg/Upload/formula/6775bea8fabfdc16ca55ceb1e6f8ba4b.png)
![](https:///quesimg/Upload/formula/bd24c686fbaaa68705d654b880481ffe.png)
(1)求
![](https:///quesimg/Upload/formula/665b5d2b981d9488d6613cd5410f56a2.png)
(2)若
![](https:///quesimg/Upload/formula/a97df5f88e6644cb3ad68849c52bc6af.png)
![](https:///quesimg/Upload/formula/e9ee71d55403212e8e1613b18ad38196.png)
![](https:///quesimg/Upload/formula/a380067a20c25338eb0312e8df6c2760.png)