全一卷
1.设复数z满足=i,则|z|=
A.1 | B. | C. | D.2 |
2.(2015新课标全国Ⅰ理科)=
A. | B. |
C. | D. |
3.设命题,则为
A. | B. |
C. | D. |
4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
A.0.648 | B.0.432 | C.0.36 | D.0.312 |
5.已知是双曲线:上的一点,,是的两个焦点,若,则的取值范围是
A. | B. | C. | D. |
6.(2015新课标全国I理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有
A.14斛 | B.22斛 |
C.36斛 | D.66斛 |
7.设为所在平面内一点,若,则下列关系中正确的是
A. | B. |
C. | D. |
8.函数=的部分图像如图所示,则的单调递减区间为
A. | B. |
C. | D. |
9.执行下面的程序框图,如果输入的,则输出的
A. | B. | C. | D. |
10.的展开式中,的系数为
A.10 | B.20 |
C.30 | D.60 |
11.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20,则r=
A.1 | B.2 | C.4 | D.8 |
12.设函数,其中 ,若存在唯一的整数,使得,则的取值范围是( )
A. | B. | C. | D. |
13.若函数为偶函数,则_____ .
14.一个圆经过椭圆的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为___________ .
15.若,满足约束条件则的最大值 .
16.如图在平面四边形ABCD中,∠A=∠B=∠C=75°,BC=2,则AB的取值范围是___________ .
17.为数列{}的前项和.已知>0,=.
(Ⅰ)求{}的通项公式;
(Ⅱ)设 ,求数列{}的前项和.
(Ⅰ)求{}的通项公式;
(Ⅱ)设 ,求数列{}的前项和.
18.(2015新课标全国Ⅰ理科)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
(1)证明:平面AEC⊥平面AFC;
(2)求直线AE与直线CF所成角的余弦值.
19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.
表中,=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,=
(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;
(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:
(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:
20.在直角坐标系中,曲线C:y=与直线交与M,N两点,
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;
(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.
21.已知函数,.
(1)当为何值时,轴为曲线的切线;
(2)用表示中的最小值,设函数,讨论零点的个数.
(1)当为何值时,轴为曲线的切线;
(2)用表示中的最小值,设函数,讨论零点的个数.
22.(本题满分10分)选修4-1:几何证明选讲
如图,AB是的直径,AC是的切线,BC交于E.
(Ⅰ)若D为AC的中点,证明:DE是的切线;
(Ⅱ)若,求∠ACB的大小.
如图,AB是的直径,AC是的切线,BC交于E.
(Ⅰ)若D为AC的中点,证明:DE是的切线;
(Ⅱ)若,求∠ACB的大小.
23.在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求,的极坐标方程;
(2)若直线的极坐标方程为,设的交点为,求的面积.
(1)求,的极坐标方程;
(2)若直线的极坐标方程为,设的交点为,求的面积.
24.已知函数.
(1)当时,求不等式的解集;
(2)若的图象与轴围成的三角形面积大于6,求的取值范围.
(1)当时,求不等式的解集;
(2)若的图象与轴围成的三角形面积大于6,求的取值范围.