全一卷
1.已知在复平面内对应的点在第四象限,则实数m的取值范围是
A. | B. | C. | D. |
2.已知集合,,则
A. | B. | C. | D. |
3.已知向量,且,则m=
A.−8 | B.−6 |
C.6 | D.8 |
4.圆的圆心到直线的距离为1,则( )
A. | B. | C. | D.2 |
5.如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为
A.24 | B.18 | C.12 | D.9 |
6.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )
A. | B. | C. | D. |
7.若将函数y=2sin2x的图像向左平移个单位长度,则平移后图像的对称轴为
A.x=(k∈Z) |
B.x=(k∈Z) |
C.x=(k∈Z) |
D.x=(k∈Z) |
8.中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的,,依次输入的为2,2,5,则输出的()
A.7 | B.12 | C.17 | D.34 |
9.若,则
A. | B. | C. | D. |
10.从区间随机抽取个数,,…,,,,…,,构成n个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为
A. | B. | C. | D. |
11.(2016新课标全国Ⅱ理科)已知F1,F2是双曲线E:的左,右焦点,点M在E上,M F1与轴垂直,sin ,则E的离心率为
A. | B. |
C. | D.2 |
12.已知函数满足,若函数与图像的交点为则()
A.0 | B. | C. | D. |
13.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=___.
14.α、β是两个平面,m、n是两条直线,有下列四个命题:
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,mα,那么m∥β. (4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
(1)如果m⊥n,m⊥α,n∥β,那么α⊥β.(2)如果m⊥α,n∥α,那么m⊥n.
(3)如果α∥β,mα,那么m∥β. (4)如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题有________.(填写所有正确命题的编号)
15.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.
16.若直线是曲线的切线,也是曲线的切线,则 .
17.为等差数列的前n项和,且记,其中表示不超过x的最大整数,如.
(Ⅰ)求;
(Ⅱ)求数列的前1000项和.
(Ⅰ)求;
(Ⅱ)求数列的前1000项和.
18.某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:
设该险种一续保人一年内出险次数与相应概率如下:
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
上年度出险次数 | 0 | 1 | 2 | 3 | 4 | |
保费 |
设该险种一续保人一年内出险次数与相应概率如下:
一年内出险次数 | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一续保人本年度的保费高于基本保费的概率;
(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;
(Ⅲ)求续保人本年度的平均保费与基本保费的比值.
19.如图,菱形的对角线与交于点,点分别在上,交于点,将沿折到位置,.
(1)证明:平面;
(2)求二面角的正弦值.
(1)证明:平面;
(2)求二面角的正弦值.
20.已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k (k > 0)的直线交E于A,M两点,点N在E上,MA⊥NA.
(Ⅰ)当t=4,时,求△AMN的面积;
(Ⅱ)当时,求k的取值范围.
(Ⅰ)当t=4,时,求△AMN的面积;
(Ⅱ)当时,求k的取值范围.
21.(1)讨论函数 的单调性,并证明当 >0时,
(2)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.
(2)证明:当 时,函数 有最小值.设g(x)的最小值为,求函数 的值域.
22.如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF⊥CE,垂足为F.
(Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.
(Ⅰ)证明:B,C,G,F四点共圆;
(Ⅱ)若AB=1,E为DA的中点,求四边形BCGF的面积.
23.在直角坐标系中,圆的方程为.
(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;
(Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率.
(Ⅰ)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;
(Ⅱ)直线的参数方程是(为参数),与交于两点,,求的斜率.
24.选修4-5:不等式选讲
已知函数,M为不等式的解集.
(Ⅰ)求M;
(Ⅱ)证明:当a,b时,.
已知函数,M为不等式的解集.
(Ⅰ)求M;
(Ⅱ)证明:当a,b时,.