全一卷
1.( )
A. | B. | C. | D.2 |
2.2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为( )
A. | B. |
C. | D. |
3.如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是( )
A. | B. |
C. | D. |
4.如图,直线,直线分别交于点,点在直线上,,若,则的度数是( )
A. | B. | C. | D. |
5.下列运算正确的是( )
A. | B. |
C. | D. |
6.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄(单位:岁):29,32,33,35,35,40,则这组数据的众数和中位数分别是( )
A.35,35 | B.34,33 | C.34,35 | D.35,34 |
7.与最接近的整数是( )
A.4 | B.5 | C.6 | D.7 |
8.抛物线经平移后,不可能得到的抛物线是( )
A. | B. |
C. | D. |
9.已知关于的方程的两实数根为,,若,则的值为( )
A. | B. | C.或3 | D.或3 |
10.如图,是的直径,垂直于弦于点,的延长线交于点.若,,则的长是( )
A.1 | B. | C.2 | D.4 |
11.如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A. | B. |
C. | D. |
12.如图,在边长为3的正方形中,点是边上的点,且,过点作的垂线交正方形外角的平分线于点,交边于点,连接交边于点,则的长为( )
A. | B. | C. | D.1 |
13.点关于原点的对称点的坐标为________ .
14.若,则________ .
15.若方程的解使关于的不等式成立,则实数的取值范围是________ .
16.如图,在中,,,,半径为1的在内平移(可以与该三角形的边相切),则点到上的点的距离的最大值为________ .
17.计算:.
18.如图,已知点E、F分别在▱ABCD的边AB、CD上,且AE=CF.求证:DE=BF.
19.劳动教育具有树德、增智、强体、育美的综合育人价值,有利于学生树立正确的劳动价值观.某学校为了解学生参加家务劳动的情况,随机抽取了名学生在某个休息日做家务的劳动时间作为样本,并绘制了以下不完整的频数分布表和扇形统计图.根据题中已有信息,解答下列问题:
(1)________,________;
(2)若该校学生有640人,试估计劳动时间在范围的学生有多少人?
(3)劳动时间在范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.
劳动时间(单位:小时) | 频数 |
12 | |
28 | |
16 | |
4 |
(1)________,________;
(2)若该校学生有640人,试估计劳动时间在范围的学生有多少人?
(3)劳动时间在范围的4名学生中有男生2名,女生2名,学校准备从中任意抽取2名交流劳动感受,求抽取的2名学生恰好是一名男生和一名女生的概率.
20.某经销商计划购进,两种农产品.已知购进种农产品2件,种农产品3件,共需690元;购进种农产品1件,种农产品4件,共需720元.
(1),两种农产品每件的价格分别是多少元?
(2)该经销商计划用不超过5400元购进,两种农产品共40件,且种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照种每件160元,种每件200元的价格全部售出,那么购进,两种农产品各多少件时获利最多?
(1),两种农产品每件的价格分别是多少元?
(2)该经销商计划用不超过5400元购进,两种农产品共40件,且种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照种每件160元,种每件200元的价格全部售出,那么购进,两种农产品各多少件时获利最多?
21.如图,直线与反比例函数的图象相交于点,,已知点的纵坐标为6
(1)求的值;
(2)若点是轴上一点,且的面积为3,求点的坐标.
(1)求的值;
(2)若点是轴上一点,且的面积为3,求点的坐标.
22.如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).
23.如图,点在以为直径的上,平分交于点,交于点,过点作的切线交的延长线于点.
(1)求证:;
(2)若,,求的长.
(1)求证:;
(2)若,,求的长.
24.如图,在平面直角坐标系中,已知抛物线经过,两点,直线与轴交于点.
(1)求,的值;
(2)经过点的直线分别与线段,直线交于点,,且与的面积相等,求直线的解析式;
(3)是抛物线上位于第一象限的一个动点,在线段和直线上是否分别存在点,,使,,,为顶点的四边形是以为一边的矩形?若存在,求出点的坐标;若不存在,请说明理由.
(1)求,的值;
(2)经过点的直线分别与线段,直线交于点,,且与的面积相等,求直线的解析式;
(3)是抛物线上位于第一象限的一个动点,在线段和直线上是否分别存在点,,使,,,为顶点的四边形是以为一边的矩形?若存在,求出点的坐标;若不存在,请说明理由.