全一卷
1.实数,0,,2中,为负数的是( )
A. | B.0 | C. | D.2 |
2.截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为( )
A. | B. | C. | D. |
3.下列英文字母为轴对称图形的是( )
A.W | B.L | C.S | D.Q |
4.下列运算中,正确的是( )
A. | B. |
C. | D. |
5.下列立体图形中,俯视图是三角形的是( )
A. | B. | C. | D. |
6.中考体育测试,某组10名男生引体向上个数分别为:6,8,8,7,7,8,9,7,8,9.则这组数据的中位数和众数分别是( )
A.7.5,7 | B.7.5,8 | C.8,7 | D.8,8 |
7.在中,,,,点,,分别为边,,的中点,则的周长为( )
A.9 | B.12 | C.14 | D.16 |
8.化简的结果是( )
A.1 | B. | C. | D. |
9.我国古代数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊三,直金十二两.问牛、羊各直金几何?”题目大意是:5头牛、2只羊共19两银子;2头牛、3只羊共12两银子,每头牛、每只羊各多少两银子?设1头牛两银子,1只羊两银子,则可列方程组为( )
A. | B. | C. | D. |
10.如图是不倒翁的主视图,不倒翁的圆形脸恰好与帽子边沿,分别相切于点,,不倒翁的鼻尖正好是圆心,若,则的度数为( )
A. | B. | C. | D. |
11.一次函数的值随的增大而增大,则点所在象限为( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
12.如图,四边形为正方形,将绕点逆时针旋转至,点,,在同一直线上,与交于点,延长与的延长线交于点,,.以下结论:
①;②;③;④.其中正确结论的个数为( )
①;②;③;④.其中正确结论的个数为( )
A.1个 | B.2个 | C.3个 | D.4个 |
13.分解因式:________ .
14.如图,已知,,则的度数为________ .
15.一个多边形外角和是内角和的,则这个多边形的边数为________ .
16.设,是方程的两个实数根,则的值为________ .
17.将一组数,2,,,…,,按下列方式进行排列:
,2,,;
,,,4;
…
若2的位置记为,的位置记为,则的位置记为________ .
,2,,;
,,,4;
…
若2的位置记为,的位置记为,则的位置记为
18.如图,点为矩形的对角线上一动点,点为的中点,连接,,若,,则的最小值为________ .
19.计算:.
20.解方程:.
21.北京冬奥组委会对志愿者开展培训活动,为了解某批次培训活动效果,随机抽取了20名志愿者的测试成绩.成绩如下:
84 93 91 87 94 86 97 100 88 94
92 91 82 89 87 92 98 92 93 88
整理上面的数据,得到频数分布表和扇形统计图:
请根据以上信息,解答下列问题:
(1)等级的频数为________,所对应的扇形圆心角度数为________;
(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;
(3)已知等级中有2名男志愿者,现从等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.
84 93 91 87 94 86 97 100 88 94
92 91 82 89 87 92 98 92 93 88
整理上面的数据,得到频数分布表和扇形统计图:
等级 | 成绩/分 | 频数 |
3 | ||
9 | ||
▲ | ||
2 |
请根据以上信息,解答下列问题:
(1)等级的频数为________,所对应的扇形圆心角度数为________;
(2)该批志愿者有1500名,若成绩不低于90分为优秀,请估计这批志愿者中成绩达到优秀等级的人数;
(3)已知等级中有2名男志愿者,现从等级中随机抽取2名志愿者,试用列表或画树状图的方法求出恰好抽到一男一女的概率.
22.数学实践活动小组去测量眉山市某标志性建筑物的高.如图,在楼前平地处测得楼顶处的仰角为,沿方向前进到达处,测得楼顶处的仰角为,求此建筑物的高.(结果保留整数.参考数据:,)
23.已知直线与反比例函数的图象在第一象限交于点.
(1)求反比例函数的解析式;
(2)如图,将直线向上平移个单位后与的图象交于点和点,求的值;
(3)在(2)的条件下,设直线与轴、轴分别交于点,,求证:.
(1)求反比例函数的解析式;
(2)如图,将直线向上平移个单位后与的图象交于点和点,求的值;
(3)在(2)的条件下,设直线与轴、轴分别交于点,,求证:.
24.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
(1)求该市改造老旧小区投入资金的年平均增长率;
(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?
25.如图,为的直径,点是上一点,与相切于点,过点作,连接,.
(1)求证:是的角平分线;
(2)若,,求的长;
(3)在(2)的条件下,求阴影部分的面积.
(1)求证:是的角平分线;
(2)若,,求的长;
(3)在(2)的条件下,求阴影部分的面积.
26.在平面直角坐标系中,抛物线与轴交于点,(点在点的左侧),与轴交于点,且点的坐标为.
(1)求点的坐标;
(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;
(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
(1)求点的坐标;
(2)如图1,若点是第二象限内抛物线上一动点,求点到直线距离的最大值;
(3)如图2,若点是抛物线上一点,点是抛物线对称轴上一点,是否存在点使以,,,为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.