全一卷
1.-2的绝对值是( )
A.2 | B.![]() | C.![]() | D.![]() |
2.下列运算正确的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
3.如图,AB∥ED,若∠1=70°,则∠2的度数是( )
![](https://img./dksih/QBM/editorImg/2022/8/14/8e55755c-a001-430b-84c5-b98e865df098.png?resizew=214)
![](https://img./dksih/QBM/editorImg/2022/8/14/8e55755c-a001-430b-84c5-b98e865df098.png?resizew=214)
A.70° | B.80° | C.100° | D.110° |
4.下列展开图中,是正方体展开图的是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
5.若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )
A.8cm | B.13cm | C.8cm或13cm | D.11cm或13cm |
6.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是( )
A.![]() | B.![]() | C.![]() | D.![]() |
7.如果
,那么下列不等式正确的是( )
![](https:///quesimg/Upload/formula/43a5abe56c019ac914e1fcde1865a747.png)
A.![]() | B.![]() | C.![]() | D.![]() |
8.如图,点A在反比例函数
的图像上,以
为一边作等腰直角三角形
,其中∠
=90°,
,则线段
长的最小值是( )
![](https://img./dksih/QBM/editorImg/2022/6/22/96b5f5ed-9373-435e-9a75-06ca2d8c5983.png?resizew=166)
![](https:///quesimg/Upload/formula/b3b8a183696731ea6e8878739f0eca2b.png)
![](https:///quesimg/Upload/formula/ef4113c492885ba7c47fe42ac792578f.png)
![](https:///quesimg/Upload/formula/e4819c39c281427826e1b3f7a4c2b720.png)
![](https:///quesimg/Upload/formula/e4819c39c281427826e1b3f7a4c2b720.png)
![](https:///quesimg/Upload/formula/467fa1170332b2e556e5f42fe6e2237c.png)
![](https:///quesimg/Upload/formula/b90e0f35eda1a729fed485f83da5ea9d.png)
![](https://img./dksih/QBM/editorImg/2022/6/22/96b5f5ed-9373-435e-9a75-06ca2d8c5983.png?resizew=166)
A.1 | B.![]() | C.![]() | D.4 |
9.分解因式:3a2﹣12=___ .
10.2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____ .
11.已知一组数据:4,5,5,6,5,4,7,8,则这组数据的众数是___ .
12.满足
的最大整数
是_______ .
![](https:///quesimg/Upload/formula/9a4e1d329b6bf7a6cb51dc8a9178669a.png)
![](https:///quesimg/Upload/formula/f0a532e15e232cb4b99a8d4d07c89575.png)
13.若关于
的一元二次方程
有实数根,则实数k的取值范围是_____ .
![](https:///quesimg/Upload/formula/81dea63b8ce3e51adf66cf7b9982a248.png)
![](https:///quesimg/Upload/formula/636a403068f3e533cbe8c66a476e9f8b.png)
14.将半径为6cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥底面圆的半径为______ cm.
15.按规律排列的单项式:
,
,
,
,
,…,则第20个单项式是_____ .
![](http://static.xuejinqu.com/qimg/c4c/c4cc3d2dfe03a702d723b5ca5a83f574.png)
![](http://static.xuejinqu.com/qimg/e34/e343cba84d06ada53c4562743ce86744.png)
![](http://static.xuejinqu.com/qimg/038/03852b87b6edfa002b63e43580fecb42.png)
![](http://static.xuejinqu.com/qimg/e8c/e8c0b9f489fd15450358d8a086d7e047.png)
![](http://static.xuejinqu.com/qimg/087/0879805f1c42730bd05efad6340eeedc.png)
16.甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是____ .
17.如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是_____ .
![](https://img./dksih/QBM/editorImg/2022/6/22/009dab81-9517-4d6b-ac81-18ba56efd6cd.png?resizew=158)
![](https://img./dksih/QBM/editorImg/2022/6/22/009dab81-9517-4d6b-ac81-18ba56efd6cd.png?resizew=158)
18.如图,在矩形
中,
=6,
=8,点
、
分别是边
、
的中点,某一时刻,动点
从点
出发,沿
方向以每秒2个单位长度的速度向点
匀速运动;同时,动点
从点
出发,沿
方向以每秒1个单位长度的速度向点
匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接
,过点
作
的垂线,垂足为
.在这一运动过程中,点
所经过的路径长是_____ .
![](//static.xuejinqu.com/qimg/16c/16caaee19f3f6f2482b58cc7f6242840.png)
![](http://static.xuejinqu.com/qimg/84b/84b504d8c4c6b929d73e85789cc64078.png)
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/a03/a03fb3deef27159df464b2b9a6b5c0f4.png)
![](http://static.xuejinqu.com/qimg/8cf/8cf69bea1877a0aacb511cdfd8f9a374.png)
![](http://static.xuejinqu.com/qimg/4b3/4b3c1b3dc24c5986d0934fb86861be61.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/235/23523c1f2bc71600e5ea2ad68fb5c403.png)
![](http://static.xuejinqu.com/qimg/a03/a03fb3deef27159df464b2b9a6b5c0f4.png)
![](http://static.xuejinqu.com/qimg/070/07070e9e4832034a6ef0b6f55042cbc9.png)
![](http://static.xuejinqu.com/qimg/192/1925ea47fbab6fa1f0a10e0e0aaaa3ed.png)
![](http://static.xuejinqu.com/qimg/393/3933a7cff86e3f9c2e7342f9c8fba2b1.png)
![](http://static.xuejinqu.com/qimg/8cf/8cf69bea1877a0aacb511cdfd8f9a374.png)
![](http://static.xuejinqu.com/qimg/792/792519c30357c2a35d813e4443eae227.png)
![](http://static.xuejinqu.com/qimg/36d/36d22b6801f4fcdbdab4b0fa2c8991d8.png)
![](http://static.xuejinqu.com/qimg/a76/a76cb4a9ef6b7f7f02aa7e8364306f78.png)
![](http://static.xuejinqu.com/qimg/1d7/1d7e8e7e18ba05c445bcc19dae1e9118.png)
![](http://static.xuejinqu.com/qimg/a76/a76cb4a9ef6b7f7f02aa7e8364306f78.png)
![](http://static.xuejinqu.com/qimg/bbc/bbc3575f07fc898fb4d0ecc0a0c3df55.png)
![](http://static.xuejinqu.com/qimg/bbc/bbc3575f07fc898fb4d0ecc0a0c3df55.png)
![](http://static.xuejinqu.com/qimg/16c/16caaee19f3f6f2482b58cc7f6242840.png)
19.计算:
4
°.
![](https:///quesimg/Upload/formula/cfb1dd921959149160d91ce8d7fdc08c.png)
![](https:///quesimg/Upload/formula/b33208b5bd5efe9840cd5e6f26c09f65.png)
20.解方程:
.
![](https:///quesimg/Upload/formula/cf430cd45f42e0ba36f4545833e96a39.png)
21.如图,在平行四边形
中,点
,
分别是边
,
的中点.求证:
.
![](//static.xuejinqu.com/qimg/ea2/ea2dfd7f28f45233b92494ee569c7b0b.png)
![](http://static.xuejinqu.com/qimg/84b/84b504d8c4c6b929d73e85789cc64078.png)
![](http://static.xuejinqu.com/qimg/235/23523c1f2bc71600e5ea2ad68fb5c403.png)
![](http://static.xuejinqu.com/qimg/393/3933a7cff86e3f9c2e7342f9c8fba2b1.png)
![](http://static.xuejinqu.com/qimg/4b3/4b3c1b3dc24c5986d0934fb86861be61.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/049/049e4fc7b15df06d9a992bc0699867e2.png)
![](http://static.xuejinqu.com/qimg/ea2/ea2dfd7f28f45233b92494ee569c7b0b.png)
22.为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校
名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:
![](//static.xuejinqu.com/qimg/8ea/8ea050c9dfa1f32aadba487a145a4a67.png)
![](//static.xuejinqu.com/qimg/bf9/bf9027dca1edee6de9182ad2bfea4ed8.png)
(1)
,
;
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
![](http://static.xuejinqu.com/qimg/299/29933184069c388d77b6c375c1ed18c8.png)
![](http://static.xuejinqu.com/qimg/8ea/8ea050c9dfa1f32aadba487a145a4a67.png)
![](http://static.xuejinqu.com/qimg/bf9/bf9027dca1edee6de9182ad2bfea4ed8.png)
(1)
![](http://static.xuejinqu.com/qimg/4d2/4d2944e462d4ed271e842b6d5263a2df.png)
![](http://static.xuejinqu.com/qimg/de7/de729d99299ff00fefa1bf42c40b3e13.png)
(2)补全条形统计图;
(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.
23.从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;
(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).
24.如图,某学习小组在教学楼
的顶部观测信号塔
底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼
的高度为20m,求信号塔的高度(计算结果保留根号).
![](https://img./dksih/QBM/editorImg/2022/6/22/67b0ac36-6291-4138-93f4-e29fd9839b19.png?resizew=155)
![](https:///quesimg/Upload/formula/f52a58fbaf4fea03567e88a9f0f6e37e.png)
![](https:///quesimg/Upload/formula/9d78abbad68bbbf12af10cd40ef4c353.png)
![](https:///quesimg/Upload/formula/f52a58fbaf4fea03567e88a9f0f6e37e.png)
![](https://img./dksih/QBM/editorImg/2022/6/22/67b0ac36-6291-4138-93f4-e29fd9839b19.png?resizew=155)
25.如图,在![](//static.xuejinqu.com/qimg/899/899c1bdb677db45a49b7b277b6e6f6d5.png)
中,∠
=45°,
,以
为直径的⊙
与边
交于点
.
![](//static.xuejinqu.com/qimg/397/397bf652d6f5a2c2e73583f3a1ee6218.png)
(1)判断直线
与⊙
的位置关系,并说明理由;
(2)若
,求图中阴影部分的面积.
![](http://static.xuejinqu.com/qimg/899/899c1bdb677db45a49b7b277b6e6f6d5.png)
![](http://static.xuejinqu.com/qimg/339/339b5a1e724cb78985d33494297a34ae.png)
![](http://static.xuejinqu.com/qimg/339/339b5a1e724cb78985d33494297a34ae.png)
![](http://static.xuejinqu.com/qimg/b6f/b6fe1c775182ed992ea5cf6511da3d68.png)
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/04a/04a25e2e21f0bef340335bd1b50ece41.png)
![](http://static.xuejinqu.com/qimg/397/397bf652d6f5a2c2e73583f3a1ee6218.png)
(1)判断直线
![](http://static.xuejinqu.com/qimg/b2a/b2a43f9f26c500fc12c44114b857d079.png)
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
(2)若
![](http://static.xuejinqu.com/qimg/2db/2dbdc14571f53f712f4f0748f764e68b.png)
26.某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.
(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;
(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?
(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;
(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?
27.如图,在网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点
、
、
、
、
均为格点.
【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段
、
,相交于点
并给出部分说理过程,请你补充完整:
解:在网格中取格点
,构建两个直角三角形,分别是△ABC和△CDE.
在Rt△ABC中,![](//static.xuejinqu.com/qimg/d75/d754013dccec449b800146965afd4ee7.png)
在Rt△CDE中, ,
所以
.
所以∠
=∠
.
因为∠
∠
=∠
=90°,
所以∠
+∠
=90°,
所以∠
=90°,
即
⊥
.
![](//static.xuejinqu.com/qimg/d8d/d8d64f584a8b314670a166fd43a8f940.png)
(1)【拓展应用】如图②是以格点
为圆心,
为直径的圆,请你只用无刻度的直尺,在
上找出一点P,使
=
,写出作法,并给出证明:
(2)【拓展应用】如图③是以格点
为圆心的圆,请你只用无刻度的直尺,在弦
上找出一点P.使
=
·
,写出作法,不用证明.
![](http://static.xuejinqu.com/qimg/192/1925ea47fbab6fa1f0a10e0e0aaaa3ed.png)
![](http://static.xuejinqu.com/qimg/1d7/1d7e8e7e18ba05c445bcc19dae1e9118.png)
![](http://static.xuejinqu.com/qimg/36d/36d22b6801f4fcdbdab4b0fa2c8991d8.png)
![](http://static.xuejinqu.com/qimg/04a/04a25e2e21f0bef340335bd1b50ece41.png)
![](http://static.xuejinqu.com/qimg/a03/a03fb3deef27159df464b2b9a6b5c0f4.png)
【操作探究】在数学活动课上,佳佳同学在如图①的网格中,用无刻度的直尺画了两条互相垂直的线段
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/6ba/6bae9535380b48f6d612f1fac8712bfe.png)
![](http://static.xuejinqu.com/qimg/d26/d263896ae815d30257aa5ed6ddcba538.png)
解:在网格中取格点
![](http://static.xuejinqu.com/qimg/235/23523c1f2bc71600e5ea2ad68fb5c403.png)
在Rt△ABC中,
![](http://static.xuejinqu.com/qimg/d75/d754013dccec449b800146965afd4ee7.png)
在Rt△CDE中, ,
所以
![](http://static.xuejinqu.com/qimg/ae5/ae5bee2d102ae0db82c1782dd3eab8df.png)
所以∠
![](http://static.xuejinqu.com/qimg/169/169cc16d3ecd338b9019bc93ea910110.png)
![](http://static.xuejinqu.com/qimg/1eb/1ebc3a508cf25e90d63062428fac21c0.png)
因为∠
![](http://static.xuejinqu.com/qimg/bad/badaf2fc6415967a2e11cfb1bda23834.png)
![](http://static.xuejinqu.com/qimg/1eb/1ebc3a508cf25e90d63062428fac21c0.png)
![](http://static.xuejinqu.com/qimg/3e2/3e2a0a8148d82ca85305258ba6f2bcd7.png)
所以∠
![](http://static.xuejinqu.com/qimg/86b/86b4416b85f15bb31e1ab2b9fab6e4d6.png)
![](http://static.xuejinqu.com/qimg/169/169cc16d3ecd338b9019bc93ea910110.png)
所以∠
![](http://static.xuejinqu.com/qimg/985/985e696ce1cd222e3f0fd7c2a651721f.png)
即
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/6ba/6bae9535380b48f6d612f1fac8712bfe.png)
![](http://static.xuejinqu.com/qimg/d8d/d8d64f584a8b314670a166fd43a8f940.png)
(1)【拓展应用】如图②是以格点
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/93e/93e1d9539fb62faaad1bb5f240b5d060.png)
![](http://static.xuejinqu.com/qimg/988/988de1580f641aaf69ea0ec9ff70d377.png)
![](http://static.xuejinqu.com/qimg/bc6/bc6b322f79cbdccb5fc4dc8d1922682b.png)
(2)【拓展应用】如图③是以格点
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
![](http://static.xuejinqu.com/qimg/756/756929deda83bf6dcbd2768ec2be17e9.png)
![](http://static.xuejinqu.com/qimg/c62/c62acae4b9a9e458f19c588813985a7b.png)
![](http://static.xuejinqu.com/qimg/637/637ce537f513fd734ce903b5c29085b1.png)
28.如图,二次函数
与
轴交于
(0,0),
(4,0)两点,顶点为
,连接
、
,若点
是线段
上一动点,连接
,将
沿
折叠后,点
落在点
的位置,线段
与
轴交于点
,且点
与
、
点不重合.
![](//static.xuejinqu.com/qimg/1a2/1a2ae479e05a8ec0be88b3532a8beb3a.png)
(1)求二次函数的表达式;
(2)①求证:
;
②求
;
(3)当
时,求直线
与二次函数的交点横坐标.
![](http://static.xuejinqu.com/qimg/c66/c662d4c83c76a03886cf0bba2ab6c5e7.png)
![](http://static.xuejinqu.com/qimg/c4c/c4cc3d2dfe03a702d723b5ca5a83f574.png)
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
![](http://static.xuejinqu.com/qimg/192/1925ea47fbab6fa1f0a10e0e0aaaa3ed.png)
![](http://static.xuejinqu.com/qimg/36d/36d22b6801f4fcdbdab4b0fa2c8991d8.png)
![](http://static.xuejinqu.com/qimg/747/74787b4807677fda6b8e4970b2888797.png)
![](http://static.xuejinqu.com/qimg/b2a/b2a43f9f26c500fc12c44114b857d079.png)
![](http://static.xuejinqu.com/qimg/1d7/1d7e8e7e18ba05c445bcc19dae1e9118.png)
![](http://static.xuejinqu.com/qimg/af6/af60cf4bc3de2922d8a4c1f5c69f5d6b.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/0ec/0ecc6422b6cd4d07b6bd6f0667189428.png)
![](http://static.xuejinqu.com/qimg/ec3/ec3e3bacc3e08bd536900aa7df6e9d4e.png)
![](http://static.xuejinqu.com/qimg/192/1925ea47fbab6fa1f0a10e0e0aaaa3ed.png)
![](http://static.xuejinqu.com/qimg/ada/adaa32c34cb6ce5e7e37e432fc52c415.png)
![](http://static.xuejinqu.com/qimg/64c/64cb5ecca031685783b4bde22b13d08d.png)
![](http://static.xuejinqu.com/qimg/c4c/c4cc3d2dfe03a702d723b5ca5a83f574.png)
![](http://static.xuejinqu.com/qimg/04a/04a25e2e21f0bef340335bd1b50ece41.png)
![](http://static.xuejinqu.com/qimg/04a/04a25e2e21f0bef340335bd1b50ece41.png)
![](http://static.xuejinqu.com/qimg/3a6/3a69470786d39bfc6512d9786ab5d9eb.png)
![](http://static.xuejinqu.com/qimg/192/1925ea47fbab6fa1f0a10e0e0aaaa3ed.png)
![](http://static.xuejinqu.com/qimg/1a2/1a2ae479e05a8ec0be88b3532a8beb3a.png)
(1)求二次函数的表达式;
(2)①求证:
![](http://static.xuejinqu.com/qimg/0c1/0c1f5f7cfde2d13a9df819acce75550b.png)
②求
![](http://static.xuejinqu.com/qimg/6a4/6a4b107b59d22140dcd5cdbbc0f40616.png)
(3)当
![](http://static.xuejinqu.com/qimg/33b/33bb3f37990b84403ce82ddb49818b59.png)
![](http://static.xuejinqu.com/qimg/de2/de2b8f0b6b184e7d2e53285c7ba51fa9.png)