全一卷
1.6的相反数是( )
A. | B. | C. | D.6 |
2.2020年7月23日,中国首次火星探测任务“天问一号”探测器在海南文昌航天发射场由长征五号遥四运载火箭发射升空,每天基本飞行200万千米,并于2021年5月15日成功着陆预选区,火星上首次留下了中国的足迹.将200万用科学记数法表示为( )
A. | B. | C. | D. |
3.下列计算中,正确的是( )
A. | B. |
C. | D. |
4.如图,将直角三角板放置在矩形纸片上,若,则的度数为( )
A.42° | B.48° | C.52° | D.60° |
5.正八边形中,每个内角与每个外角的度数之比为( )
A.1:3 | B.1:2 | C.2:1 | D.3:1 |
6.化简的结果是( )
A. | B. | C. | D. |
7.全民反诈,刻不容缓!陈科同学参加学校举行的“防诈骗”主题演讲比赛,五位评委给出的分数分别为90,80,86,90,94,则这组数据的中位数和众数分别是( )
A.80,90 | B.90,90 | C.86,90 | D.90,94 |
8.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )
A. | B. | C. | D. |
9.已知一元二次方程的两根为,,则的值为( )
A. | B. | C.2 | D.5 |
10.如图,在以为直径的中,点为圆上的一点,,弦于点,弦交于点,交于点.若点是的中点,则的度数为( )
A.18° | B.21° | C.22.5° | D.30° |
11.在平面直角坐标系中,抛物线与轴交于点,则该抛物线关于点成中心对称的抛物线的表达式为( )
A. | B. |
C. | D. |
12.如图,在矩形中,对角线,相交于点,,,点在线段上从点至点运动,连接,以为边作等边三角形,点和点分别位于两侧,下列结论:①;②;③;④点运动的路程是,其中正确结论的序号为( )
A.①④ | B.①②③ | C.②③④ | D.①②③④ |
13.分解因式:______ .
14.一次函数的值随值的增大而减少,则常数的取值范围是______ .
15.如图,中,,,平分交于点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于点和点,作直线,交于点,则的长为______ .
16.若关于的不等式只有3个正整数解,则的取值范围是______ .
17.观察下列等式:;
;
;
……
根据以上规律,计算______ .
;
;
……
根据以上规律,计算
18.如图,在菱形中,,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值是______ .
19.计算:.
20.解方程组
21.吸食毒品极易上瘾,不但对人的健康危害极大,而且严重影响家庭和社会的稳定.为了解同学们对禁毒知识的掌握情况,从我市某校1000名学生中随机抽取部分学生进行问卷调查,调查评价结果分为:“了解较少”,“基本了解”,“了解较多”,“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.
请根据统计图回答下列问题:
(1)本次抽取调查的学生共有 人,其中“了解较多”的占 %;
(2)请补全条形统计图:
(3)估计此校“非常了解”和“了解较多”的学生共有 人;
(4)“了解较少”的四名学生中,有3名学生,,是初一学生,1名学生为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测.请用画树状图或列表的方法,求恰好抽到初一、初二学生各1名的概率.
请根据统计图回答下列问题:
(1)本次抽取调查的学生共有 人,其中“了解较多”的占 %;
(2)请补全条形统计图:
(3)估计此校“非常了解”和“了解较多”的学生共有 人;
(4)“了解较少”的四名学生中,有3名学生,,是初一学生,1名学生为初二学生,为了提高学生对禁毒知识的认识,对这4人进行了培训,然后从中随机抽取2人对禁毒知识的掌握情况进行检测.请用画树状图或列表的方法,求恰好抽到初一、初二学生各1名的概率.
22.“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从处测得该建筑物顶端的俯角为24°,继续向该建筑物方向水平飞行20米到达处,测得顶端的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:,,)
23.为进一步落实“德、智、体、美、劳”五育并举工作,某中学以体育为突破口,准备从体育用品商场一次性购买若干个足球和篮球,用于学校球类比赛活动.每个足球的价格都相同,每个篮球的价格也相同.已知篮球的单价比足球单价的2倍少30元,用1200元购买足球的数量是用900元购买篮球数量的2倍.
(1)足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?
(1)足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共200个,但要求足球和篮球的总费用不超过15500元,学校最多可以购买多少个篮球?
24.如图,直线与轴交于点,与轴交于点.直线,且与的外接圆相切,与双曲线在第二象限内的图象交于、两点.
(1)求点,的坐标和的半径;
(2)求直线所对应的函数表达式;
(3)求的面积.
(1)求点,的坐标和的半径;
(2)求直线所对应的函数表达式;
(3)求的面积.
25.如图,在等腰直角三角形中,,,边长为2的正方形的对角线交点与点重合,连接,.
(1)求证:;
(2)当点在内部,且时,设与相交于点,求的长;
(3)将正方形绕点旋转一周,当点、、三点在同一直线上时,请直接写出的长.
(1)求证:;
(2)当点在内部,且时,设与相交于点,求的长;
(3)将正方形绕点旋转一周,当点、、三点在同一直线上时,请直接写出的长.
26.如图,在平面直角坐标系中,已知抛物线经过点和点.
(1)求这条抛物线所对应的函数表达式;
(2)点为该抛物线上一点(不与点重合),直线将的面积分成2:1两部分,求点的坐标;
(3)点从点出发,以每秒1个单位的速度沿轴移动,运动时间为秒,当时,求的值.
(1)求这条抛物线所对应的函数表达式;
(2)点为该抛物线上一点(不与点重合),直线将的面积分成2:1两部分,求点的坐标;
(3)点从点出发,以每秒1个单位的速度沿轴移动,运动时间为秒,当时,求的值.