全一卷
1.-5的绝对值等于( )
A.-5 | B.5 | C. | D. |
2.下面计算正确的是( )
A. | B. |
C. | D. |
3.如图所示,该几何体的俯视图为( )
A. | B. | C. | D. |
4.在函数中,自变量的取值范围是( )
A. | B. | C. | D. |
5.四张背面完全相同的卡片,正面分别印有等腰三角形、圆、平行四边形、正六边形,现在把它们的正面向下,随机的摆放在桌面上,从中任意抽出一张,则抽到的卡片正面是中心对称图形的概率是( )
A. | B. | C. | D.1 |
6.如图,是的角平分线,过点作交延长线于点,若,,则的度数为( )
A.100° | B.110° | C.125° | D.135° |
7.如图,在四边形中,,,,,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是( )
A.4 | B. | C.2 | D. |
8.如图,二次函数()的图象与轴交于,两点,与轴交于点,点坐标为,点在与之间(不包括这两点),抛物线的顶点为,对称轴为直线,有以下结论:①;②若点,点是函数图象上的两点,则;③;④可以是等腰直角三形.其中正确的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
9.据有关报道,2020年某市斥资约5 800 000元改造老旧小区,数据5 800 000科学记数法表示为_________ .
10.因式分解:_________ .
11.一次函数,且,则它的图象不经过第_________ 象限.
12.甲、乙两人进行飞镖比赛,每人投5次,所得平均环数相等,其中甲所得环数的方差为5,乙所得环数如下:2,3,5,7,8,那么成绩较稳定的是_________ (填“甲”或“乙”).
13.关于的方程有两个实数根,则的取值范围是_________ .
14.如图,矩形的边在轴上,点在反比例函数的图象上,点在反比例函数的图象上,若,,则_________ .
15.如图,在四边形中,,,,,点和点分别是和的中点,连接,,,若,则的面积是_________ .
16.如图,在矩形中,,,连接,以为边,作矩形使,连接交于点;以为边,作矩形,使,连接交于点;以为边,作矩形,使,连接交于点;…按照这个规律进行下去,则的面积为_________.
17.先化简,再求代数式的值:,其中.
18.如图,在平面直角坐标系中,网格的每个小方格都是边长为1个单位长度的正方形,点,,的坐标分别为,,,先以原点为位似中心在第三象限内画一个,使它与位似,且相似比为2:1,然后再把绕原点逆时针旋转90°得到.
(1)画出,并直接写出点的坐标;
(2)画出,直接写出在旋转过程中,点到点所经过的路径长.
(1)画出,并直接写出点的坐标;
(2)画出,直接写出在旋转过程中,点到点所经过的路径长.
19.某校为了解疫情期间学生居家学习情况,以问卷调查的形式随机调查了部分学生居家学习的主要方式(每名学生只选最主要的一种),并将调查结果绘制成如下不完整的统计图.
根据以上信息回答下列问题:
(1)参与本次问卷调查的学生共有_________人,其中选择类型的有_________人;
(2)在扇形统计图中,求所对应的圆心角度数,并补全条形统计图;
(3)该校学生人数为1250人,选择、、三种学习方式大约共有多少人?
种类 | |||||
学习方式 | 老师直播 教学课程 | 国家教育云平台 教学课程 | 电视台播放 教学课程 | 第三方 网上课程 | 其他 |
根据以上信息回答下列问题:
(1)参与本次问卷调查的学生共有_________人,其中选择类型的有_________人;
(2)在扇形统计图中,求所对应的圆心角度数,并补全条形统计图;
(3)该校学生人数为1250人,选择、、三种学习方式大约共有多少人?
20.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是_________;
(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和 恰好是偶数的概率.
(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是_________;
(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的
21.为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍,求八年级捐书人数是多少?
22.如图,已知,以为直径的交于点,连接,的平分线交于点,交于点,且.
(1)判断所在直线与的位置关系,并说明理由;
(2)若,,求的半径.
(1)判断所在直线与的位置关系,并说明理由;
(2)若,,求的半径.
23.如图,小岛和都在码头的正北方向上,它们之间距离为,一艘渔船自西向东匀速航行,行驶到位于码头的正西方向处时,测得,渔船速度为,经过,渔船行驶到了处,测得,求渔船在处时距离码头有多远?(结果精确到)
(参考数据:,,,,,)
(参考数据:,,,,,)
24.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量(件)与每件的售价(元)满足一次函数关系,部分数据如下表:
(1)求出与之间的函数表达式;(不需要求自变量的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?
售价(元/件) | 60 | 65 | 70 |
销售量(件) | 1400 | 1300 | 1200 |
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为(元),那么售价定为多少元可获得最大利润?最大利润是多少?
25.已知:菱形和菱形,,起始位置点在边上,点在所在直线上,点在点的右侧,点在点的右侧,连接和,将菱形以为旋转中心逆时针旋转角().
(1)如图1,若点与重合,且,求证:;
(2)若点与不重合,是上一点,当时,连接和,和所在直线相交于点;
①如图2,当时,请猜想线段和线段的数量关系及的度数;
②如图3,当时,请求出线段和线段的数量关系及的度数;
③在②的条件下,若点与的中点重合,,,在整个旋转过程中,当点与点重合时,请直接写出线段的长.
(1)如图1,若点与重合,且,求证:;
(2)若点与不重合,是上一点,当时,连接和,和所在直线相交于点;
①如图2,当时,请猜想线段和线段的数量关系及的度数;
②如图3,当时,请求出线段和线段的数量关系及的度数;
③在②的条件下,若点与的中点重合,,,在整个旋转过程中,当点与点重合时,请直接写出线段的长.
26.如图1,在平面直角坐标系中,抛物线与轴交于,两点,点坐标为,与轴交于点,直线与抛物线交于,两点.
(1)求抛物线的函数表达式;
(2)求的值和点坐标;
(3)点是直线上方抛物线上的动点,过点作轴的垂线,垂足为,交直线于点,过点作轴的平行线,交于点,当是线段的三等分点时,求点坐标;
(4)如图2,是轴上一点,其坐标为,动点从出发,沿轴正方向以每秒5个单位的速度运动,设的运动时间为(),连接,过作于点,以所在直线为对称轴,线段经轴对称变换后的图形为,点在运动过程中,线段的位置也随之变化,请直接写出运动过程中线段与抛物线有公共点时的取值范围.
(1)求抛物线的函数表达式;
(2)求的值和点坐标;
(3)点是直线上方抛物线上的动点,过点作轴的垂线,垂足为,交直线于点,过点作轴的平行线,交于点,当是线段的三等分点时,求点坐标;
(4)如图2,是轴上一点,其坐标为,动点从出发,沿轴正方向以每秒5个单位的速度运动,设的运动时间为(),连接,过作于点,以所在直线为对称轴,线段经轴对称变换后的图形为,点在运动过程中,线段的位置也随之变化,请直接写出运动过程中线段与抛物线有公共点时的取值范围.