全一卷
1.﹣3的绝对值是( )
A.﹣3 | B.3 | C.- | D. |
2.我国高铁通车总里程居世界第一,预计到2020年底,高铁总里程大约39000千米,39000用科学记数法表示为( )
A.39×103 | B.3.9×104 | C.3.9×10﹣4 | D.39×10﹣3 |
3.如图,直线AB∥CD,∠3=70°,则∠1=( )
A.70° | B.100° | C.110° | D.120° |
4.一组数据4,10,12,14,则这组数据的平均数是( )
A.9 | B.10 | C.11 | D.12 |
5.已知△FHB∽△EAD,它们的周长分别为30和15,且FH=6,则EA的长为( )
A.3 | B.2 | C.4 | D.5 |
6.实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是( )
A.a>b | B.﹣a<b | C.a>﹣b | D.﹣a>b |
7.已知等边三角形一边上的高为2,则它的边长为( )
A.2 | B.3 | C.4 | D.4 |
8.如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是( )
A. | B. |
C. | D. |
9.已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程﹣6+k+2=0的两个根,则k的值等于( )
A.7 | B.7或6 | C.6或﹣7 | D.6 |
10.如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是( )
A.①②③ | B.①③ | C.①② | D.②③ |
11.因式分解:a2+ab﹣a=_____ .
12.方程2x+10=0的解是_____.
13.已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是_____ .
14.函数y=中,自变量x的取值范围是_____ .
15.从﹣2,﹣1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于_____ .
16.设AB,CD,EF是同一平面内三条互相平行的直线,已知AB与CD的距离是12cm,EF与CD的距离是5cm,则AB与EF的距离等于_____ cm.
17.如图,在矩形ABCD中,AD=4,将∠A向内翻折,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=_____ .
18.观察下列等式:
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=_____ (结果用含m的代数式表示).
2+22=23﹣2;
2+22+23=24﹣2;
2+22+23+24=25﹣2;
2+22+23+24+25=26﹣2;
…
已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=
19.(1)计算:2÷﹣(﹣1)2020﹣﹣()0.
(2)先化简,再求值:(+)÷(),自选一个值代入求值.
(2)先化简,再求值:(+)÷(),自选一个值代入求值.
20.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.
21.某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:
(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m= ,n= ;
(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?
(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m= ,n= ;
(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?
22.如图,一艘船由西向东航行,在A处测得北偏东60°方向上有一座灯塔C,再向东续航行60km到达B处,这时测得灯塔C在北偏东30°方向上,已知在灯塔C的周围47km内有暗礁,问这艘船继续向东航行是否安全?
23.某文体商店计划购进一批同种型号的篮球和同种型号的排球,每一个排球的进价是每一个篮球的进价的90%,用3600元购买排球的个数要比用3600元购买篮球的个数多10个.
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
(1)问每一个篮球、排球的进价各是多少元?
(2)该文体商店计划购进篮球和排球共100个,且排球个数不低于篮球个数的3倍,篮球的售价定为每一个100元,排球的售价定为每一个90元.若该批篮球、排球都能卖完,问该文体商店应购进篮球、排球各多少个才能获得最大利润?最大利润是多少?
24.如图,AB是⊙O的直径,C为⊙O上一点,连接AC,CE⊥AB于点E,D是直径AB延长线上一点,且∠BCE=∠BCD.
(1)求证:CD是⊙O的切线;
(2)若AD=8,=,求CD的长.
(1)求证:CD是⊙O的切线;
(2)若AD=8,=,求CD的长.
25.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.