全一卷
1.有理数3的相反数是( )
A.﹣3 | B.﹣ | C.3 | D. |
2.分式的值是零,则x的值为( )
A.5 | B.2 | C.-2 | D.-5 |
3.下列多项式中,能运用平方差公式分解因式的是( )
A. | B. | C. | D. |
4.下列四个图形中,是中心对称图形的是( )
A. | B. | C. | D. |
5.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是( )
A. | B. | C. | D. |
6.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b,理由是( )
A.连结直线外一点与直线上各点的所有线段中,垂线段最短 |
B.在同一平面内,垂直于同一条直线的两条直线互相平行 |
C.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线 |
D.经过直线外一点,有且只有一条直线与这条直线平行 |
7.已知点(-2,a),(2,b),(3,c)在函数的图象上,则下列判断正确的是( )
A.a<b<c | B.b<a<c | C.a<c<b | D.c<b<a |
8.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是( )
A.65° | B.60° | C.58° | D.50° |
9.如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x,则列出方程正确的是( )
A. | B. |
C. | D. |
10.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是( )
A. | B. | C. | D. |
11.点P(m,2)在第二象限内,则m的值可以是(写出一个即可)______ .
12.数据1,2,4,5,3的中位数是______.
13.如图为一个长方体,则该几何体主视图的面积为______ cm2.
14.如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是______ °.
15.如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β,则tanβ的值是______ .
16.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是_____ cm.
(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为_____ cm.
(1)当E,F两点的距离最大值时,以点A,B,C,D为顶点的四边形的周长是
(2)当夹子的开口最大(点C与点D重合)时,A,B两点的距离为
17.计算:
18.解不等式:
19.某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如下两幅不完整的统计图表,请根据图表信息回答下列问题:
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
类别 | 项 目 | 人数 |
A | 跳绳 | 59 |
B | 健身操 | ▲ |
C | 俯卧撑 | 31 |
D | 开合跳 | ▲ |
E | 其它 | 22 |
(1)求参与问卷调查的学生总人数.
(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?
(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.
20.如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.
(1)求弦AB的长.
(2)求的长.
(1)求弦AB的长.
(2)求的长.
21.某地区山峰的高度每增加1百米,气温大约降低0.6℃.气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:
(1)求高度为5百米时的气温.
(2)求T关于h的函数表达式.
(3)测得山顶的气温为6℃,求该山峰的高度.
(1)求高度为5百米时的气温.
(2)求T关于h的函数表达式.
(3)测得山顶的气温为6℃,求该山峰的高度.
22.如图,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
23.如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
(1)当m=5时,求n的值.
(2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.
(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.
24.如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过OB,OC的中点D,E作AE,AD的平行线,相交于点F, 已知OB=8.
(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P, Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.
(1)求证:四边形AEFD为菱形.
(2)求四边形AEFD的面积.
(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P, Q,G为顶点的四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.