全一卷
1.在,﹣1,0,,这四个数中,最小的实数是( )
A. | B.﹣1 | C.0 | D. |
2.如图所示几何体的俯视图是( )
A. | B. | C. | D. |
3.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是( )
A.2、40 | B.42、38 | C.40、42 | D.42、40 |
4.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )
A.M | B.N | C.P | D.Q |
5.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )
A.33元 | B.36元 | C.40元 | D.42元 |
6.如图,平面上有两个全等的正八边形ABCDEFGH、A′B′C′D′E′F′G′H′,若点B与点B′重合,点H与点H′重合,则∠ABA′的度数为( )
A.15° | B.30° | C.45° | D.60° |
7.点A(2,1)经过某种图形变换后得到点B(﹣1,2),这种图形变化可以是( )
A.关于x轴对称 | B.关于y轴对称 |
C.绕原点逆时针旋转90° | D.绕原点顺时针旋转90° |
8.如图,在矩形ABCD中,点E在CD上,且DE:CE=1:3,以点A为圆心,AE为半径画弧,交BC于点F,若F是BC中点,则AD:AB的值是( )
A.6:5 | B.5:4 | C.6: | D.:2 |
9.如图,P是抛物线y=x2﹣x﹣4在第四象限的一点,过点P分别向x轴和y轴作垂线,垂足分别为A、B,则四边形OAPB周长的最大值为( )
A.10 | B.8 | C.7.5 | D.5 |
10.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D在BC上,延长BC至点E,使CE=BD,F是AD的中点,连接EF,则EF的长是( )
A. | B. | C.3 | D.4 |
11.分解因式2x2-8的结果是_________;
12.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于_____ 度.
13.为了奖励校运会优秀运动员,学校决定用1200元购买篮球和排球两种奖品若干个.其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有_____ .
14.如图,在平面直角坐标系中,矩形ABCD的BC边落在y轴上,其它部分均在第二象限,双曲线过点A,延长对角线CA交x轴于点E,以从AD、AE为边作平行四边形AEFD,若平行四边形AEFD的面积为2,则k的值为_____ .
15.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=4,D是AB上一个动点,将点D绕点C顺时针旋转60°,得到点E,连接A
A.若AE=,则BD=_____. |
16.(1)计算:(﹣1)8+24×(﹣2)﹣3﹣
(2)化简:
(2)化简:
17.如图,在▱ABCD中,E,F分别为BC,AB中点,连接FC,AE,且AE与FC交于点G,AE的延长线与DC的延长线交于点N.
(1)求证:△ABE≌△NCE;
(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.
(1)求证:△ABE≌△NCE;
(2)若AB=3n,FB=GE,试用含n的式子表示线段AN的长.
18.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识某校数学兴趣小组设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,将测试成绩分成A、B、C、D四组,绘制了如下统计图表
问卷测试成绩分组表
(1)本次抽样调查的样本总量是 ;
(2)样本中,测试成绩在B组的频数是 ,D组的频率是 ;
(3)样本中,这次测试成绩的中位数落在 组;
(4)如果该校共有880名学生,请估计成绩在90<x≤100的学生约有 人.
问卷测试成绩分组表
组别 | 分数/分 |
A | 60<x≤70 |
B | 70<x≤80 |
C | 80<x≤90 |
D | 90<x≤100 |
(1)本次抽样调查的样本总量是 ;
(2)样本中,测试成绩在B组的频数是 ,D组的频率是 ;
(3)样本中,这次测试成绩的中位数落在 组;
(4)如果该校共有880名学生,请估计成绩在90<x≤100的学生约有 人.
19.如图,平面直角坐标系xOy中,平行四边形OABC的B,C两点在第一象限,点A在x轴正半轴上.
(1)请用直尺(不带刻度)和圆规作一个圆,使其圆心D在对角线OB上,DO为半径,该圆和BC所在直线相切于点E;(作图不必写作法,但要保留作图痕迹.)
(2)在(1)中,若点B坐标为(4,3),求点E的坐标.
(1)请用直尺(不带刻度)和圆规作一个圆,使其圆心D在对角线OB上,DO为半径,该圆和BC所在直线相切于点E;(作图不必写作法,但要保留作图痕迹.)
(2)在(1)中,若点B坐标为(4,3),求点E的坐标.
20.已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)
(1)求△ABC的面积是____;
(2)求直线AB的表达式;
(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
(1)求△ABC的面积是____;
(2)求直线AB的表达式;
(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;
(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.
21.如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.
(1)求证:DE是⊙O的切线;
(2)若CD=6cm,DE=5cm,求⊙O直径的长.
(1)求证:DE是⊙O的切线;
(2)若CD=6cm,DE=5cm,求⊙O直径的长.
22.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图.
(1)A、B两地相距____千米,甲的速度为____千米/分;
(2)求线段EF所表示的y与x之间的函数表达式;
(3)当乙到达终点A时,甲还需多少分钟到达终点B?
(1)A、B两地相距____千米,甲的速度为____千米/分;
(2)求线段EF所表示的y与x之间的函数表达式;
(3)当乙到达终点A时,甲还需多少分钟到达终点B?
23.如图,A(0,2),B(6,2),C(0,c)(c>0),以A为圆心AB长为半径的交y轴正半轴于点D,与BC有交点时,交点为E,P为上一点.
(1)若c=6+2,
①BC=_____,的长为_____;
②当CP=6时,判断CP与⊙A的位置关系,并加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)
(1)若c=6+2,
①BC=_____,的长为_____;
②当CP=6时,判断CP与⊙A的位置关系,并加以证明;
(2)若c=10,求点P与BC距离的最大值;
(3)分别直接写出当c=1,c=6,c=9,c=11时,点P与BC的最大距离(结果无需化简)