全一卷
1.在﹣1,﹣2,0,1四个数中最小的数是( )
A.-1 | B.-2 | C.0 | D.1 |
2.如图,AB∥ CD,∠ A=50°,则∠ 1的大小是( )
A.50° | B.120° | C.130° | D.150° |
3.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是( )
A.(x﹣6)2=﹣4+36 | B.(x﹣6)2=4+36 | C.(x﹣3)2=﹣4+9 | D.(x﹣3)2=4+9 |
4.下列说法正确的是( )
A.“购买1张彩票就中奖”是不可能事件 |
B.“掷一次骰子,向上一面的点数是6”是随机事件 |
C.了解我国青年人喜欢的电视节目应作全面调查 |
D.甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大 |
5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )
A.8 | B.9 | C.10 | D.11 |
6.若代数式有意义,则实数x的取值范围是( )
A.x≠1 | B.x≥0 | C.x≠0 | D.x≥0且x≠1 |
7.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是( )
A.∠AED=∠B | B.∠ADE=∠C | C. | D. |
8.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()
A.R2﹣r2=a2 | B.a=2Rsin36° | C.a=2rtan36° | D.r=Rcos36° |
9.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )
A.(4,﹣3) | B.(﹣4,3) | C.(0,﹣3) | D.(0,3) |
10.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
A.4 | B.3 | C.2 | D.1 |
11.4的算术平方根是__ ,9的平方根是__ ,﹣27的立方根是__ .
12.为创建“全国环保模范城”,我市对白云湖73个排污口进行了封堵,每年可减少污水排放185000吨,将185000用科学记数法表示为_______ .
13.如图,是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是_______ cm3.
14.某校抽样调查了七年级学生每天体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第 组.
组别 | 时间(小时) | 频数(人) |
第1组 | 0≤t<0.5 | 12 |
第2组 | 0.5≤t<1 | 24 |
第3组 | 1≤t<1.5 | 18 |
第4组 | 1.5≤t<2 | 10 |
第5组 | 2≤t<2.5 | 6 |
15.观察下列图形规律:当n=____ 时,图形“●”的个数和小“△”的个数相等.
16.在ABCD中,AB<BC,已知∠B=30°,AB=2,将△ABC沿AC翻折至△AB′C,使点B′落在ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为 .
17.(6分)解不等式组
请结合题意,完成本题解答.
(Ⅰ)解不等式①,得x>2;
(Ⅱ)解不等式②,得x≤4;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为2<x≤4.
请结合题意,完成本题解答.
(Ⅰ)解不等式①,得x>2;
(Ⅱ)解不等式②,得x≤4;
(Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为2<x≤4.
18.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=.
19.端午节前夕,小东的父母准备购买若干个粽子和咸鸭蛋(每个粽子的价格相同,每个咸鸭蛋的价格相同).已知粽子的价格比咸鸭蛋的价格贵1.8元,花30元购买粽子的个数与花12元购买咸鸭蛋的个数相同,求粽子与咸鸭蛋的价格各多少?
20.(8分)如图,反比例函数y=(k<0)的图象与矩形ABCD的边相交于E、F两点,且BE=2AE,E(﹣1,2).
(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.
(1)求反比例函数的解析式;
(2)连接EF,求△BEF的面积.
21.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):
(1)报名参加课外活动小组的学生共有 人,将条形图补充完整;
(2)扇形图中m= ,n= ;
(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.
(1)报名参加课外活动小组的学生共有 人,将条形图补充完整;
(2)扇形图中m= ,n= ;
(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.
22.(8分)如图,射线PA切⊙O于点A,连接PO.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.
23.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?
24.问题:如图(1),点E、F分别在正方形的边上,,试判断之间的数量关系.
【发现证明】小聪把绕点A逆时针旋转至,从而发现,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形中,,点E、F分别在边上,则当与满足 关系时,仍有.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形.已知米,,道路上分别有景点E、F,且米,现要在E、F之间修一条笔直道路,求这条道路的长(结果取整数,参考数据:,)
【发现证明】小聪把绕点A逆时针旋转至,从而发现,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形中,,点E、F分别在边上,则当与满足 关系时,仍有.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形.已知米,,道路上分别有景点E、F,且米,现要在E、F之间修一条笔直道路,求这条道路的长(结果取整数,参考数据:,)
25.如图,已知抛物线与x轴交于点A、B(点A位于点B左侧),与y轴交于点C,CD∥x轴交抛物线于点D,M为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)设动点N(-2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上位于x轴上方的一点,请探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.
(1)求点A、B、C的坐标;
(2)设动点N(-2,n),求使MN+BN的值最小时n的值;
(3)P是抛物线上位于x轴上方的一点,请探究:是否存在点P,使以P、A、B为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.