全一卷
1.若a与1互为相反数,则|a+1|等于( )
A.﹣1 | B.0 | C.1 | D.2 |
2.如图是某几何体的三视图,该几何体是()
A.圆柱 | B.圆锥 | C.正三棱柱 | D.正三棱锥 |
3.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为( )
A.0.67×10-5 | B.67×10-6 | C.6.7×10-6 | D.6.7×10-5 |
4.在天水市汉字听写大赛中,10名学生得分情况如表
那么这10名学生所得分数的中位数和众数分别是( )
人数 | 3 | 4 | 2 | 1 |
分数 | 80 | 85 | 90 | 95 |
那么这10名学生所得分数的中位数和众数分别是( )
A.85和82.5 | B.85.5和85 | C.85和85 | D.85.5和80 |
5.二次函数y=ax2+bx﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是( )
A.﹣3 | B.﹣1 | C.2 | D.3 |
6.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()
A. | B. | C.或 | D.或 |
7.如图,将矩形纸带ABCD,沿EF折叠后,C、D两点分别落在C′、D′的位置,经测量得∠EFB=65°,则∠AED′的度数是( )
A.65° | B.55° | C.50° | D.25° |
8.如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为( )
A.2 | B.3 | C.4 | D.5 |
9.如图,AB为半圆所在⊙O的直径,弦CD为定长且小于⊙O的半径(C点与A点不重合),CF⊥CD交AB于点F,DE⊥CD交AB于点E,G为半圆弧上的中点.当点C在上运动时,设的长为x,CF+DE=y.则下列图象中,能表示y与x的函数关系的图象大致是()
A. | B. | C. | D. |
10.定义运算:a⊗b=a(1﹣b).下面给出了关于这种运算的几种结论:
①2⊗(﹣2)=6,
②a⊗b=b⊗a,
③若a+b=0,则(a⊗a)+(b⊗b)=2ab,
④若a⊗b=0,则a=0或b=1,
其中结论正确的序号是()
①2⊗(﹣2)=6,
②a⊗b=b⊗a,
③若a+b=0,则(a⊗a)+(b⊗b)=2ab,
④若a⊗b=0,则a=0或b=1,
其中结论正确的序号是()
A.①④ | B.①③ | C.②③④ | D.①②④ |
11.相切两圆的半径分别是5和3,则该两圆的圆心距是_____ .
12.不等式组的所有整数解是_____ .
13.如图,边长为1的小正方形构成的网格中,半径为1的⊙O在格点上,则∠AED的正切值为_____ .
14.一元二次方程x2+3﹣2x=0的解是_____ .
15.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是_____ 米.
16.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是_____ .
17.下列函数(其中n为常数,且n>1)
①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有_____ 个.
①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有
18.正方形OA1B1C1、A1A2B2C2、A2A3B3C3,按如图放置,其中点A1、A2、A3在x轴的正半轴上,点B1、B2、B3在直线上,则点A3的坐标为_____________.
19.(9分)(2015•天水)计算:
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
(1)(π﹣3)0+﹣2cos45°﹣
(2)若x+=3,求的值.
20.某地发生8.1级地震,震源深度20千米.救援队火速赶往灾区救援,探测出某建筑物废墟下方点C处有生命迹象.在废墟一侧某面上选两探测点A、B,AB相距2米,探测线与该面的夹角分别是30°和45°(如图).试确定生命所在点C与探测面的距离.(参考数据≈1.41,≈1.73)
21.(10分)(2015•天水)如图,在平面直角坐标系内,O为原点,点A的坐标为(﹣3,0),经过A、O两点作半径为的⊙C,交y轴的负半轴于点B.
(1)求B点的坐标;
(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.
(1)求B点的坐标;
(2)过B点作⊙C的切线交x轴于点D,求直线BD的解析式.
22.钓鱼岛是我国固有领土.某校七年级(15)班举行“爱国教育”为主题班会时,就有关钓鱼岛新闻的获取途径,对本班50名学生进行调查(要求每位同学,只选自己最认可的一项),并绘制如图所示的扇形统计图.
(1)该班学生选择“报刊”的有 人.在扇形统计图中,“其它”所在扇形区域的圆心角是 度.(直接填结果)
(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有 人.(直接填结果)
(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)
(1)该班学生选择“报刊”的有 人.在扇形统计图中,“其它”所在扇形区域的圆心角是 度.(直接填结果)
(2)如果该校七年级有1500名学生,利用样本估计选择“网站”的七年级学生约有 人.(直接填结果)
(3)如果七年级(15)班班委会就这5种获取途径中任选两种对全校学生进行调查,求恰好选用“网站”和“课堂”的概率.(用树状图或列表法分析解答)
23.天水“伏羲文化节”商品交易会上,某商人将每件进价为8元的纪念品,按每件9元出售,每天可售出20件.他想采用提高售价的办法来增加利润,经实验,发现这种纪念品每件提价1元,每天的销售量会减少4件.
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.
(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?
(1)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式.
(2)每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?
24.如图,点A(m,6)、B(n,1)在反比例函数图像上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.
(1)求m、n的值并写出该反比例函数的解析式.
(2)点E在线段CD上,S△ABE=10,求点E的坐标.
(1)求m、n的值并写出该反比例函数的解析式.
(2)点E在线段CD上,S△ABE=10,求点E的坐标.
25.(12分)(2015•天水)如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:
(1)PE=PD;
(2)AC•PD=AP•BC.
(1)PE=PD;
(2)AC•PD=AP•BC.
26.在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若抛物线经过A、B两点,求抛物线的解析式.
(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.
(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.
(1)如图,若抛物线经过A、B两点,求抛物线的解析式.
(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.
(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.