全一卷
1.-2的绝对值是( )
A.2 | B. | C. | D. |
2.中国人口众多,地大物博,仅领水面积就约为370 000km2,将“370 000”这个数用科学记数法表示为().
A. | B. | C. | D. |
3.在数轴上表示不等式2(1﹣x)<4的解集,正确的是( )
A. | B. |
C. | D. |
4.如图,是一台自动测温仪记录的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是( )
A.凌晨4时气温最低为-3℃ |
B.14时气温最高为8℃ |
C.从0时至14时,气温随时间增长而上升 |
D.从14时至24时,气温随时间增长而下降 |
5.下列运算中正确的是()
A. | B. |
C. | D. |
6.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为( )
A.60° | B.50° | C.40° | D.30° |
7.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB,若BE=2,则AE的长为( )
A. | B.1 | C. | D.2 |
8.下列说法中正确的是( )
A.“任意画出一个等边三角形,它是轴对称图形”是随机事件 |
B.“任意画出一个平行四边形,它是中心对称图形”是必然事件 |
C.“概率为0.0001的事件”是不可能事件 |
D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次 |
9.点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为( )
A.40° | B.100° | C.40°或140° | D.40°或100° |
10.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是( )
A.4 | B.5 | C.6 | D.9 |
11.二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是( )
A. | B. | C. | D. |
12.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A.AF=AE | B.△ABE≌△AGF | C.EF= | D.AF=EF |
13.计算:_____ .
14.分式方程的解是 .
15.若一组数据1,2,x,4的众数是1,则这组数据的方差为_____ .
16.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,PA=,∠P=60°,则图中阴影部分的面积为____ .
17.在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为_________ .
18.先化简,再求值: ,其中,.
19.如图,已知反比例函数的图象与一次函数的图象相交于点A(1,4)和点B(n,).
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.
20.为配合全市“禁止焚烧秸秆”工作,某学校举行了“禁止焚烧秸秆,保护环境,从我做起”为主题的演讲比赛. 赛后组委会整理参赛同学的成绩,并制作了如下不完整的频数分布表(图1)和频数分布直方图(图2).
请根据图表提供的信息,解答下列问题:
(1)表中的a= ,b= (2)请补全频数分布直方图;
(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是 ;
(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .
请根据图表提供的信息,解答下列问题:
(1)表中的a= ,b= (2)请补全频数分布直方图;
(3)若用扇形统计图来描述成绩分布情况,则分数段70≤x<80对应的圆心角的度数是 ;
(4)竞赛成绩不低于90分的4名同学中正好有2名男同学,2名女同学.学校从这4名同学中随机抽取2名同学接受电视台记者采访,则正好抽到一名男同学和一名女同学的概率为 .
21.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
22.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:
(1)BC的长;
(2)sin ∠ADC的值.
(1)BC的长;
(2)sin ∠ADC的值.
23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长.
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长.
24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
25.如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
(1)求证:AC平分∠BAD;
(2)探究线段PB,AB之间的数量关系,并说明理由;
(3)若AD=3,求△ABC的面积.
26.边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.
(1)求抛物线的解析式;
(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)点P从点C出发,沿射线CB每秒1个单位长度的速度运动,运动时间为t秒.过点P作PF⊥CD于点F,当t为何值时,以点P,F,D为顶点的三角形与△COD相似?
(3)点M为直线AB上一动点,点N为抛物线上一动点,是否存在点M,N,使得以点M,N,D,E为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.