全一卷
1.的相反数是()
A. | B. | C. | D. |
2.下列计算正确的是()
A. | B. |
C. | D. |
3.由六个小正方体搭成的几何体如图所示,则它的主视图是( )
A. | B. | C. | D. |
4.如图,将三角形纸板的直角顶点放在直尺的一边上,,则等于( )
A. | B. | C. | D. |
5.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x千米,出租车费为21.5元,那么x的最大值是( )
A.11 | B.8 | C.7 | D.5 |
6.若,则的值为( )
A.1 | B. | C. | D. |
7.如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形.投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )
A.1 | B. | C. | D. |
8.下列命题中是真命题的是( )
A.确定性事件发生的概率为1 |
B.平分弦的直径垂直于弦 |
C.正多边形都是轴对称图形 |
D.两边及其一边的对角对应相等的两个三角形全等 |
9.如图,在△ABC中,AB>AC,点D、E分别是边AB、AC的中点,点F在BC边上,连接DE、DF、EF,则添加下列哪一个条件后,仍无法判断△FCE与△EDF全等( )
A.∠A=∠DFE | B.BF=CF | C.DF∥AC | D.∠C=∠EDF |
10.如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D是线段AB上的一点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF,给出以下四个结论:
①;
②若点D是AB的中点,则AF=AB;
③当B、C、F、D四点在同一个圆上时,DF=DB;
④若,则
其中正确的结论序号是( )
①;
②若点D是AB的中点,则AF=AB;
③当B、C、F、D四点在同一个圆上时,DF=DB;
④若,则
其中正确的结论序号是( )
A.①② | B.③④ | C.①②③ | D.①②③④ |
11.东营市2014年城镇居民人均可支配收入是37000元,比2013年提高了8.9%.37000元用科学记数法表示是__________ 元.
12.分解因式:________________________ .
13.在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的中位数为_____.
14.4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为,B处的俯角为.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是____________ 米.
15.如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为 m.
16.若分式方程无解,则的值为_________ .
17.如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则此最短路径的长为___________ .
18.如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在轴上,点O,B1,B2,B3,…都在直线上,则点A2015的坐标是 .
19.(1)计算:
(2)解方程组:
(2)解方程组:
20.(本题满分8分)东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).
(1)求出该班学生人数;
(2)将统计图补充完整;
(3)若该校共有学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
(1)求出该班学生人数;
(2)将统计图补充完整;
(3)若该校共有学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
21.已知在△ABC中,∠B=90o,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
(1)求证:AC·AD=AB·AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.
22.(本题满分8分)如图是函数与函数在第一象限内的图象,点是的图象上一动点,轴于点A,交的图象于点,轴于点B,交的图象于点.
(1)求证:D是BP的中点;
(2)求出四边形ODPC的面积.
(1)求证:D是BP的中点;
(2)求出四边形ODPC的面积.
23.2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)
24.如图,两个全等的△ABC和△DEF重叠在一起,固定△ABC,将△DEF进行如下变换:
(1)如图①,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF,AD,BD,请直接写出S△ABC与S四边形AFBD的关系.
(2)如图②,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ABC应满足什么条件?请给出证明.
(3)在(2)的条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你画出图形,并求出sin∠CGF的值.
(1)如图①,△DEF沿直线CB向右平移(即点F在线段CB上移动),连接AF,AD,BD,请直接写出S△ABC与S四边形AFBD的关系.
(2)如图②,当点F平移到线段BC的中点时,若四边形AFBD为正方形,那么△ABC应满足什么条件?请给出证明.
(3)在(2)的条件下,将△DEF沿DF折叠,点E落在FA的延长线上的点G处,连接CG,请你画出图形,并求出sin∠CGF的值.
25.如图,抛物线经过A(),B(),C()三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.