全一卷
1.(3分)计算﹣2+1的结果是()
A.﹣3 | B.﹣1 | C.3 | D.1 |
2.下列计算正确的是( )
A. | B. |
C. | D. |
3.如图,AB∥CD,∠A=46°,∠C=27°,则∠AEC的大小应为()
A.19° | B.29° | C.63° | D.73° |
4.一组数据2,3,1,2,2的中位数、众数和方差分别是()
A.1,2,0.4 | B.2,2,4.4 | C.2,2,0.4 | D.2,1,0.4 |
5.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )
A.主视图改变,左视图改变 | B.俯视图不变,左视图不变 |
C.俯视图改变,左视图改变 | D.主视图改变,左视图不变 |
6.估计的运算结果应在哪两个连续自然数之间( )
A.5和6 | B.6和7 | C.7和8 | D.8和9 |
7.下列一元二次方程中,有两个相等实数根的是()
A. | B. |
C. | D. |
8.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为( )
A.(2,3) | B.(3,1) | C.(2,1) | D.(3,3) |
9.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()
A.1或2 | B.2或3 | C.3或4 | D.4或5 |
10.如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
①;
②当0<x<3时,;
③如图,当x=3时,EF=;
④当x>0时,随x的增大而增大,随x的增大而减小.
其中正确结论的个数是( )
A.1 | B.2 | C.3 | D.4 |
11.太阳半径约为696000千米,数字696000用科学记数法表示为_______ 千米.
12.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为________ .
13.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________ .
14.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)
15.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系,已知足球被踢出后经过4s落地,则足球距地面的最大高度是______ m.
16.如图,在Rt△AOB中,∠AOB=90°,AO=,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q同时停止运动.设运动的时间为t秒.
(1)当t=____ 时,PQ∥EF;
(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是_________ .
(1)当t=
(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是
17.先化简,再求值:,其中.
18.如图,在中,点是的中点,点、分别是线段及其延长线上,且,给出下列条件:①;②;③,从中选择一个条件使四边形是菱形,并给出证明,你选择的条件是________ (只填写序号).
19.为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如下表是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元.请问表中二档电价、三档电价各是多少?
20.某校申报“跳绳特色运动”学校一年后,抽样调查了部分学生的“1分钟跳绳”成绩,并制成了下面的频数分布直方图(每小组含最小值,不含最大值)和扇形图.
(1)补全频数分布直方图,扇形图中m= ;
(2)若把每组中各个数据用这组数据的中间值代替(如A组80≤x<100的中间值是(=90次),则这次调查的样本平均数是多少;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人.
(1)补全频数分布直方图,扇形图中m= ;
(2)若把每组中各个数据用这组数据的中间值代替(如A组80≤x<100的中间值是(=90次),则这次调查的样本平均数是多少;
(3)如果“1分钟跳绳”成绩大于或等于120次为优秀,那么该校2100名学生中“1分钟跳绳”成绩为优秀的大约有多少人.
21.在学习概率的课堂上,老师提出问题:只有一张电影票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看电影,请你设计一个对小明和小刚都公平的方案.
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)
甲同学的方案:将红桃2、3、4、5四张牌背面向上,小明先抽一张,小刚从剩下的三张牌中抽一张,若两张牌上的数字之和是奇数,则小明看电影,否则小刚看电影.
(1)甲同学的方案公平吗?请用列表或画树状图的方法说明;
(2)乙同学将甲的方案修改为只用红桃2、3、4三张牌,抽取方式及规则不变,乙的方案公平吗?(只回答,不说明理由)
22.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AC=16,tanA=,求⊙O的半径.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若AC=16,tanA=,求⊙O的半径.
23.某农场急需氨肥8 t,在该农场南北方向分别有A,B两家化肥公司,A公司有氨肥3 t,每吨售价750元;B公司有氨肥7 t,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输质量a(单位:t)的关系如图所示.
(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8 t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.
(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8 t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.
24.(10分)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=E
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=E
A. 在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 . [实践运用] (1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数; (2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长. |
25.如图,已知经过点D(2,)的抛物线(m为常数,且m>0)与x轴交于点A、B(点A位于B的左侧),与y轴交于点
A. (1)填空:m的值为 ,点A的坐标为 ; (2)根据下列描述,用尺规完成作图(保留作图痕迹,不写作法):连接AD,在x轴上方作射线AE,使∠BAE=∠BAD,过点D作x轴的垂线交射线AE于点E; (3)动点M、N分别在射线AB、AE上,求ME+MN的最小值; (4)t是过点A平行于y轴的直线,P是抛物线上一点,过点P作l的垂线,垂足为点G,请你探究:是否存在点P,使以P、G、A为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,说明理由. |