全一卷
1.|﹣3|的相反数是()
A.3 | B.﹣3 | C.±3 | D. |
2.若分式的值为0,则x的值为( ).
A.0 | B.1 | C.﹣1 | D.±1 |
3.已知ABCD中,∠A+∠C=200°,则∠B的度数是( )
A.100° | B.160° | C.80° | D.60° |
4.下列调查中,须用普查的是
A.了解某市学生的视力情况 |
B.了解某市中学生课外阅读的情况 |
C.了解某市百岁以上老人的健康情况 |
D.了解某市老年人参加晨练的情况 |
5.有一个直角三角形的两边长分别为3和4,则第三边的长为( )
A.5 | B. | C. | D.5或 |
6.如图,AB是⊙O的直径,C.D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于
A.50° B.40° C.60° D.70°
A.50° B.40° C.60° D.70°
7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是
A.50(1+x2)=196 | B.50+50(1+x2)=196 |
C.50+50(1+x)+50(1+x)2=196 | D.50+50(1+x)+50(1+2x)=196 |
8.在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
9.如图,函数和的图象相交于A(m,3),则不等式的解集为( )
A. | B. | C. | D. |
10.如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
11.的平方根是____.
12.3005000用科学记数法表示(并保留两个有效数字)为_____ .
13.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的和为_____ .
14.如图所示⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为______ .
15.已知,则ab=_____ .
16.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是____________ .
17.如图,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形ABCD的面积为_______ .
18.因式分解2x4﹣2=_____ .
19.如图,一扇形纸片,圆心角∠AOB为120°,弦AB的长为cm,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为_____ .
20.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.
21.(1)计算:.
(2)先化简,再求值:,其中.
(2)先化简,再求值:,其中.
22.如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,
(1)求证:CB∥PD;
(2)若BC=3,sin∠P=,求⊙O的直径.
(1)求证:CB∥PD;
(2)若BC=3,sin∠P=,求⊙O的直径.
23.“五一”假期,黔西南州某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图所示是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:
(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).
(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?
(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?
(1)若去丁地的车票占全部车票的10%,请求出去丁地的车票数量,并补全统计图(如图所示).
(2)若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张(所有车票的形状、大小、质地完全相同、均匀),那么员工小胡抽到去甲地的车票的概率是多少?
(3)若有一张车票,小王和小李都想去,决定采取摸球的方式确定,具体规则:“每人从不透明袋子中摸出分别标有1、2、3、4的四个球中摸出一球(球除数字不同外完全相同),并放回让另一人摸,若小王摸得的数字比小李的小,车票给小王,否则给小李.”试用列表法或画树状图的方法分析这个规则对双方是否公平?
24.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.
(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?
(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?
(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?
(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?
25.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中a、b、m、n均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n,填空: + =( + )2;
(3)若,且a、b、m、n均为正整数,求a的值.
设(其中a、b、m、n均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若,用含m、n的式子分别表示a、b,得a= ,b= ;
(2)利用所探索的结论,找一组正整数a、b、m、n,填空: + =( + )2;
(3)若,且a、b、m、n均为正整数,求a的值.
26.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为
A. (1)求抛物线的解析式; (2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标; (3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由. |