全一卷
1.给出四个数0,,,-1,其中最小的是()
A.0 | B. | C. | D.-1 |
2.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( )
A. | B. | C. | D. |
3.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有( )
A.25人 | B.35人 | C.40人 | D.100人 |
4.下列选项中的图形,不属于中心对称图形的是( )
A.等边三角形 | B.正方形 | C.正六边形 | D.圆 |
5.如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )
A. | B. | C. | D. |
6.若关于的一元二次方程有两个相等实数根,则的值是( )
A.-1 | B.1 | C.-4 | D.4 |
7.不等式组的解是()
A.x<1 | B.x≥3 | C.1≤x<3 | D.1<x≤3 |
8.如图,点的坐标是,是等边三角形,点在第一象限.若反比例函数的图象经过点,则的值是( )
A.1 | B.2 | C. | D. |
9.如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,
E,以FM为对角线作菱形FGMH,已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y
与x之间的函数关系式是( )
E,以FM为对角线作菱形FGMH,已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y
与x之间的函数关系式是( )
A. | B. | C. | D. |
10.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE与BCFG,点M,N,P,Q分别是DE,FG,弧AC,弧BC的中点.若MP+NQ=14,AC+BC=18,则AB的长是( )
A. | B. | C.13 | D.16 |
11.分解因式:=___ .
12.一个不透明的袋子中只装有1个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色是一红一蓝的概率是___ .
13. 已知扇形的圆心角为120°,弧长为,则它的半径为 .
14.方程的根是___ .
15.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________ m2 .
16.图甲是小明设计的带菱形图案的花边作品,该作品由形如图乙的矩形图案拼接而成(不重叠,无缝隙).图乙种,,EF=4cm,上下两个阴影三角形的面积之和为54cm2,其内部菱形由两组距离相等的平行线交叉得到,则该菱形的周长为___ cm
17.(本题10分)(1)计算:
(2)化简:
(2)化简:
18.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D,
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
19.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
笔试 | 面试 | 体能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
20.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6
(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.
(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)
(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.
(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)
21.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E, DF切半圆于点
(1)求证:DF∥AB;
(2)若OC=CE,BF=,求DE的长.
A.已知∠AEF=135°. |
(1)求证:DF∥AB;
(2)若OC=CE,BF=,求DE的长.
22.某农业观光园计划将一块面积为900m2的园圃分成A,B,C三个区域,分别种植甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株.已知B区域面积是A的2倍,设A区域面积为.
(1)求该园圃栽种的花卉总株数关于的函数表达式;
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.
(1)求该园圃栽种的花卉总株数关于的函数表达式;
(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?
(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.
23.如图,抛物线交轴正半轴于点A,顶点为M,对称轴NB交轴于点B,过点C(2,0)作射线CD交MB于点D(D在轴上方),OE∥CD交MB于点E,EF∥轴交CD于点F,作直线M
A. (1)求点A,M的坐标; (2)当BD为何值时,点F恰好落在抛物线上? (3)当BD=1时,①、求直线MF的解析式,并判断点A是否落在该直线上; ②、延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3= |
24.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).
A.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x. |
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).