全一卷
1.下列运算正确的是( )
A. | B. | C. | D. |
2.一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是()
A. | B. | C. | D. |
3.太阳内部高温核聚变反应释放的辐射能功率为千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学计数法表示,保留2个有效数字)
A. | B. | C. | D. |
4.已知关于的一元二次方程的两个实数根是,且,则的值是()
A.8 | B. | C.6 | D.5 |
5.某班50名同学分别站在公路的A、B两点处,A、B两点相距1000米,A处有30人,B处有20人,要让两处的同学走到一起,并且使所有同学走的路程总和最小,那么集合地点应选在()
A.A点处 |
B.线段的中点处 |
C.线段上,距A点米处 |
D.线段上,距A点400米处 |
6.关于的方程有实数根,则整数的最大值是( )
A.6 | B.7 | C.8 | D.9 |
7.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.
A.3 | B.4 | C.5 | D.6 |
8.如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为【 】米.
A.25 | B. | C. | D. |
9.已知圆O的半径为R,AB是圆O的直径,D是AB延长线上一点,DC是圆O的切线,C是切点,连结AC,若,则BD的长为( )
A. | B. | C. | D. |
10.如图,已知中,,将绕顶点C顺时针旋转至的位置,且三点在同一条直线上,则点A经过的最短路线的长度是()cm.
A.8 | B. | C. | D. |
11.如图,在中,,分别以为圆心,以的长为半径作圆,将截去两个扇形,则剩余(阴影)部分的面积为()cm2.
A. | B. | C. | D. |
12.在同一平面直角坐标系中,反比例函数与一次函数交于两点,O为坐标原点,则的面积为( )
A.2 | B.6 | C.10 | D.8 |
13.分解因式:______ .
14.方程的解是________ .
15.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,的三个顶点都在格点上(每个小方格的顶点叫格点),画出绕点O逆时针旋转90°后的.
16.如图,正方形的边长为10,点E在CB的延长线上,,点P在边CD上运动(C、D两点除外),EP与AB相交于点F,若,四边形的面积为,则关于的函数关系式是_________ .
17.已知边长为的正三角形,两顶点分别在平面直角坐标系的轴、轴的正半轴上滑动,点C在第一象限,连结OC,则OC的长的最大值是________ .
18.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
方案一:从纸箱厂定制购买,每个纸箱价格为4元;
方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.
(1)若需要这种规格的纸箱个,请分别写出从纸箱厂购买纸箱的费用(元)和蔬菜加工厂自己加工制作纸箱的费用(元)关于(个)的函数关系式;
(2)假设你是决策者,你认为应该选择哪种方案?并说明理由.
19.新星公司到某大学从应届毕业生中招聘公司职员,对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定,三项的得分满分都为100分,三项的分数分别按5∶3∶2的比例记入每人的最后总分,有4位应聘者的得分如下表所示.
(1)写出4位应聘者的总分;
(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差;
(3)由(1)和(2),你对应聘者有何建议?
(1)写出4位应聘者的总分;
(2)就表中专业知识、英语水平、参加社会实践与社团活动等三项的得分,分别求出三项中4人所得分数的方差;
(3)由(1)和(2),你对应聘者有何建议?
20.已知,延长BC到D,使.取的中点,连结交于点.
(1)求的值;
(2)若,求的长.
(1)求的值;
(2)若,求的长.
21.要对一块长60米、宽40米的矩形荒地进行绿化和硬化.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为和,且到的距离与到的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽.
(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为和,且到的距离与到的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.
22.如图所示,圆是的外接圆,与的平分线相交于点,延长交圆于点,连结.
(1)求证:;
(2)若圆的半径为10cm,,求的面积.
(1)求证:;
(2)若圆的半径为10cm,,求的面积.
23.在四边形中,,且.取的中点,连结.
(1)试判断三角形的形状;
(2)在线段上,是否存在点,使.若存在,请求出的长;若不存在,请说明理由.
(1)试判断三角形的形状;
(2)在线段上,是否存在点,使.若存在,请求出的长;若不存在,请说明理由.
24.如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.
(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.
(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.